Search results
Results From The WOW.Com Content Network
Lead tetraacetate is a strong oxidizing agent, [6] a source of acetyloxy groups, and a general reagent for the preparation of organolead compounds. Some of its many uses in organic chemistry: Acetoxylation of benzylic, allylic, [7] and α-oxygen ether C−H bonds, for example the conversion of dioxane to 2-acetoxy-1,4-dioxane [8]
The Criegee oxidation is a glycol cleavage reaction in which vicinal diols are oxidized to form ketones and aldehydes using lead tetraacetate. It is analogous to the use of periodate (Malaprade reaction) but uses a milder oxidant. This oxidation was discovered by Rudolf Criegee and coworkers and first reported in 1931 using ethylene glycol as ...
Stages in the oxidation of primary alcohols to carboxylic acids via aldehydes and aldehyde hydrates. Almost all industrial scale oxidations use oxygen or air as the oxidant. [2] Through a variety of mechanisms, the removal of a hydride equivalent converts a primary or secondary alcohol to an aldehyde or ketone, respectively.
Organolead compounds can be derived from Grignard reagents and lead chloride. For example, methylmagnesium chloride reacts with lead chloride to tetramethyllead, a water-clear liquid with boiling point 110 °C and density 1.995 g/cm 3. Reaction of a lead(II) source with sodium cyclopentadienide gives the lead metallocene, plumbocene.
The unusual alkyl nitrite starting material of the Barton reaction is prepared by attack of an alcohol on a nitrosylium cation generated in situ by dehydration of doubly protonated nitrous acid. [6] This series of steps is mechanistically identical to the first half of the mechanism formation of the more well-known aryl and alkyl diazonium salts.
The direct oxidation of primary alcohols to carboxylic acids normally proceeds via the corresponding aldehyde, which is transformed via an aldehyde hydrate (R−CH(OH) 2) by reaction with water before it can be further oxidized to the carboxylic acid. Mechanism of oxidation of primary alcohols to carboxylic acids via aldehydes and aldehyde hydrates
Glycol cleavage is a specific type of organic chemistry oxidation. The carbon–carbon bond in a vicinal diol (glycol) is cleaved and instead the two oxygen atoms become double-bonded to their respective carbon atoms. Depending on the substitution pattern in the diol, these carbonyls will be ketones and/or aldehydes. [1]
Sodium hypochlorite, [4] lead tetraacetate, [5] N-bromosuccinimide, and (bis(trifluoroacetoxy)iodo)benzene [6] can effect a Hofmann rearrangement. The intermediate isocyanate can be trapped with various nucleophiles to form stable carbamates or other products rather than undergoing decarboxylation.