When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Measurement uncertainty - Wikipedia

    en.wikipedia.org/wiki/Measurement_uncertainty

    In metrology, measurement uncertainty is the expression of the statistical dispersion of the values attributed to a quantity measured on an interval or ratio scale.. All measurements are subject to uncertainty and a measurement result is complete only when it is accompanied by a statement of the associated uncertainty, such as the standard deviation.

  3. Experimental uncertainty analysis - Wikipedia

    en.wikipedia.org/wiki/Experimental_uncertainty...

    (1) The Type I bias equations 1.1 and 1.2 are not affected by the sample size n. (2) Eq(1.4) is a re-arrangement of the second term in Eq(1.3). (3) The Type II bias and the variance and standard deviation all decrease with increasing sample size, and they also decrease, for a given sample size, when x's standard deviation σ becomes small ...

  4. Uncertainty analysis - Wikipedia

    en.wikipedia.org/wiki/Uncertainty_analysis

    In physical experiments uncertainty analysis, or experimental uncertainty assessment, deals with assessing the uncertainty in a measurement.An experiment designed to determine an effect, demonstrate a law, or estimate the numerical value of a physical variable will be affected by errors due to instrumentation, methodology, presence of confounding effects and so on.

  5. Metrology - Wikipedia

    en.wikipedia.org/wiki/Metrology

    Measurement uncertainty is a value associated with a measurement which expresses the spread of possible values associated with the measurand—a quantitative expression of the doubt existing in the measurement. [36] There are two components to the uncertainty of a measurement: the width of the uncertainty interval and the confidence level. [37]

  6. Propagation of uncertainty - Wikipedia

    en.wikipedia.org/wiki/Propagation_of_uncertainty

    Fornasini, Paolo (2008), The uncertainty in physical measurements: an introduction to data analysis in the physics laboratory, Springer, p. 161, ISBN 978-0-387-78649-0 Meyer, Stuart L. (1975), Data Analysis for Scientists and Engineers , Wiley, ISBN 978-0-471-59995-1

  7. Measurement system analysis - Wikipedia

    en.wikipedia.org/wiki/Measurement_system_analysis

    Calculating the measurement uncertainty of individual measurement devices and/or measurement systems; Common tools and techniques of measurement system analysis include: calibration studies, fixed effect ANOVA, components of variance, attribute gage study, gage R&R, [1] ANOVA gage R&R, and destructive testing analysis. The tool selected is ...

  8. Observational error - Wikipedia

    en.wikipedia.org/wiki/Observational_error

    Measurement errors can be divided into two components: random and systematic. [2] Random errors are errors in measurement that lead to measurable values being inconsistent when repeated measurements of a constant attribute or quantity are taken. Random errors create measurement uncertainty.

  9. Uncertainty quantification - Wikipedia

    en.wikipedia.org/wiki/Uncertainty_quantification

    An approach to inverse uncertainty quantification is the modular Bayesian approach. [7] [17] The modular Bayesian approach derives its name from its four-module procedure. Apart from the current available data, a prior distribution of unknown parameters should be assigned. Module 1: Gaussian process modeling for the computer model