Search results
Results From The WOW.Com Content Network
The section lift coefficient is based on two-dimensional flow over a wing of infinite span and non-varying cross-section so the lift is independent of spanwise effects and is defined in terms of ′, the lift force per unit span of the wing. The definition becomes
Lift is always accompanied by a drag force, which is the component of the surface force parallel to the flow direction. Lift is mostly associated with the wings of fixed-wing aircraft , although it is more widely generated by many other streamlined bodies such as propellers , kites , helicopter rotors , racing car wings , maritime sails , wind ...
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
Lift coefficient (C L or C Z) (aerodynamics) (dimensionless) - Relates the lift generated by an airfoil with the dynamic pressure of the fluid flow around the airfoil, and the planform area of the airfoil. Ballistic coefficient (BC) (aerodynamics) (units of kg/m 2) - A measure of a body's ability to overcome air resistance in flight. BC is a ...
Definition Named after Field of application Coefficient of kinetic friction: mechanics (friction of solid bodies in translational motion) Coefficient of static friction: mechanics (friction of solid bodies at rest) Föppl–von Kármán number
where C L and C D are lift coefficient and drag coefficient respectively. Each coefficient is a function of the angle of attack and Reynolds number. As the angle of attack increases lift rises rapidly from the no lift angle before slowing its increase and then decreasing, with a sharp drop as the stall angle is reached and flow is disrupted ...
The aerodynamic center is the point at which the pitching moment coefficient for the airfoil does not vary with lift coefficient (i.e. angle of attack), making analysis simpler. [ 1 ] d C m d C L = 0 {\displaystyle {dC_{m} \over dC_{L}}=0} where C L {\displaystyle C_{L}} is the aircraft lift coefficient .
Pages for logged out editors learn more. Contributions; Talk; Coefficient of lift