When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Lift coefficient - Wikipedia

    en.wikipedia.org/wiki/Lift_coefficient

    The section lift coefficient is based on two-dimensional flow over a wing of infinite span and non-varying cross-section so the lift is independent of spanwise effects and is defined in terms of ′, the lift force per unit span of the wing. The definition becomes

  3. Kutta–Joukowski theorem - Wikipedia

    en.wikipedia.org/wiki/Kutta–Joukowski_theorem

    Hence the vortex force line map clearly shows whether a given vortex is lift producing or lift detrimental. Lagally theorem When a (mass) source is fixed outside the body, a force correction due to this source can be expressed as the product of the strength of outside source and the induced velocity at this source by all the causes except this ...

  4. Lift (force) - Wikipedia

    en.wikipedia.org/wiki/Lift_(force)

    The above lift equation neglects the skin friction forces, which are small compared to the pressure forces. By using the streamwise vector i parallel to the freestream in place of k in the integral, we obtain an expression for the pressure drag D p (which includes the pressure portion of the profile drag and, if the wing is three-dimensional ...

  5. Aerodynamic center - Wikipedia

    en.wikipedia.org/wiki/Aerodynamic_center

    The aerodynamic center is the point at which the pitching moment coefficient for the airfoil does not vary with lift coefficient (i.e. angle of attack), making analysis simpler. [ 1 ] d C m d C L = 0 {\displaystyle {dC_{m} \over dC_{L}}=0} where C L {\displaystyle C_{L}} is the aircraft lift coefficient .

  6. Lifting-line theory - Wikipedia

    en.wikipedia.org/wiki/Lifting-line_theory

    Lifting line theory supposes wings that are long and thin with negligible fuselage, akin to a thin bar (the eponymous "lifting line") of span 2s driven through the fluid. . From the Kutta–Joukowski theorem, the lift L(y) on a 2-dimensional segment of the wing at distance y from the fuselage is proportional to the circulation Γ(y) about the bar a

  7. Propeller theory - Wikipedia

    en.wikipedia.org/wiki/Propeller_theory

    where C L and C D are lift coefficient and drag coefficient respectively. Each coefficient is a function of the angle of attack and Reynolds number. As the angle of attack increases lift rises rapidly from the no lift angle before slowing its increase and then decreasing, with a sharp drop as the stall angle is reached and flow is disrupted ...

  8. Physical coefficient - Wikipedia

    en.wikipedia.org/wiki/Physical_coefficient

    Lift coefficient (C L or C Z) (aerodynamics) (dimensionless) - Relates the lift generated by an airfoil with the dynamic pressure of the fluid flow around the airfoil, and the planform area of the airfoil. Ballistic coefficient (BC) (aerodynamics) (units of kg/m 2) - A measure of a body's ability to overcome air resistance in flight. BC is a ...

  9. Pressure coefficient - Wikipedia

    en.wikipedia.org/wiki/Pressure_coefficient

    The coefficient of lift for a two-dimensional airfoil section with strictly horizontal surfaces can be calculated from the coefficient of pressure distribution by integration, or calculating the area between the lines on the distribution. This expression is not suitable for direct numeric integration using the panel method of lift approximation ...