Search results
Results From The WOW.Com Content Network
Operators given by ^ = (^ † + ^) and ^ = (^ † ^) are called the quadratures and they represent the real and imaginary parts of the complex amplitude represented by ^. [1] The commutation relation between the two quadratures can easily be calculated:
Quadrature amplitude modulation (QAM), a modulation method of using both an (in-phase) carrier wave and a 'quadrature' carrier wave that is 90° out of phase with the main, or in-phase, carrier Quadrature phase-shift keying (QPSK), a phase-shift keying of using four quadrate points on the constellation diagram, equispaced around a circle
The two amplitude-modulated sinusoids are known as the in-phase (I) and quadrature (Q) components, which describes their relationships with the amplitude- and phase-modulated carrier. [ A ] [ 2 ] Or in other words, it is possible to create an arbitrarily phase-shifted sine wave, by mixing together two sine waves that are 90° out of phase in ...
An annihilation operator (usually denoted ^) lowers the number of particles in a given state by one. A creation operator (usually denoted ^ †) increases the number of particles in a given state by one, and it is the adjoint of the annihilation operator.
In physics, a squeezed coherent state is a quantum state that is usually described by two non-commuting observables having continuous spectra of eigenvalues.Examples are position and momentum of a particle, and the (dimension-less) electric field in the amplitude (phase 0) and in the mode (phase 90°) of a light wave (the wave's quadratures).
In the quantum mechanics study of optical phase space, the displacement operator for one mode is the shift operator in quantum optics, ^ = (^ † ^), where is the amount of displacement in optical phase space, is the complex conjugate of that displacement, and ^ and ^ † are the lowering and raising operators, respectively.
The measured electric field strengths at the wave's phase are the eigenvalues of the normalized quadrature operator , defined as [5] ^ = [^ + ^ †] = ^ + ^ where ^ and ^ † are the annihilation and creation operators, respectively, of the oscillator representing the photon.
In mathematics, particularly in geometry, quadrature (also called squaring) is a historical process of drawing a square with the same area as a given plane figure or computing the numerical value of that area. A classical example is the quadrature of the circle (or squaring the circle).