When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Convolution of probability distributions - Wikipedia

    en.wikipedia.org/wiki/Convolution_of_probability...

    The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.

  3. Characteristic function (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Characteristic_function...

    That is, for any two random variables X 1, X 2, both have the same probability distribution if and only if =. [citation needed] If a random variable X has moments up to k-th order, then the characteristic function φ X is k times continuously differentiable on the entire real line.

  4. List of convolutions of probability distributions - Wikipedia

    en.wikipedia.org/wiki/List_of_convolutions_of...

    In probability theory, the probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density ...

  5. Convolution - Wikipedia

    en.wikipedia.org/wiki/Convolution

    For example, convolution of digit sequences is the kernel operation in multiplication of multi-digit numbers, which can therefore be efficiently implemented with transform techniques (Knuth 1997, §4.3.3.C; von zur Gathen & Gerhard 2003, §8.2). Eq.1 requires N arithmetic operations per output value and N 2 operations for N outputs. That can be ...

  6. Distribution of the product of two random variables - Wikipedia

    en.wikipedia.org/wiki/Distribution_of_the...

    Let be the product of two independent variables = each uniformly distributed on the interval [0,1], possibly the outcome of a copula transformation. As noted in "Lognormal Distributions" above, PDF convolution operations in the Log domain correspond to the product of sample values in the original domain.

  7. Buzen's algorithm - Wikipedia

    en.wikipedia.org/wiki/Buzen's_algorithm

    For any n ≤ N and m ≤ M, define g(n,m) as the normalizing constant for a network with n customers, m service facilities (1,2, … m), and values of X 1, X 2, … X m that match the first m members of the original sequence X 1, X 2, … X M. Given this definition, the sum of the terms in the second group can now be written as g(N, M-1).

  8. Gaussian function - Wikipedia

    en.wikipedia.org/wiki/Gaussian_function

    This integral is 1 if and only if = (the normalizing constant), and in this case the Gaussian is the probability density function of a normally distributed random variable with expected value μ = b and variance σ 2 = c 2: = ⁡ (()).

  9. Convolution theorem - Wikipedia

    en.wikipedia.org/wiki/Convolution_theorem

    In mathematics, the convolution theorem states that under suitable conditions the Fourier transform of a convolution of two functions (or signals) is the product of their Fourier transforms. More generally, convolution in one domain (e.g., time domain ) equals point-wise multiplication in the other domain (e.g., frequency domain ).