When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Descartes' rule of signs - Wikipedia

    en.wikipedia.org/wiki/Descartes'_rule_of_signs

    In mathematics, Descartes' rule of signs, described by René Descartes in his La Géométrie, counts the roots of a polynomial by examining sign changes in its coefficients. The number of positive real roots is at most the number of sign changes in the sequence of polynomial's coefficients (omitting zero coefficients), and the difference ...

  3. Real-root isolation - Wikipedia

    en.wikipedia.org/wiki/Real-root_isolation

    Descartes' rule of signs asserts that the difference between the number of sign variations in the sequence of the coefficients of a polynomial and the number of its positive real roots is a nonnegative even integer. It results that if this number of sign variations is zero, then the polynomial does not have any positive real roots, and, if this ...

  4. Root-finding algorithm - Wikipedia

    en.wikipedia.org/wiki/Root-finding_algorithm

    However, in the case of polynomials there are other methods such as Descartes' rule of signs, Budan's theorem and Sturm's theorem for bounding or determining the number of roots in an interval. They lead to efficient algorithms for real-root isolation of polynomials, which find all real roots with a guaranteed accuracy.

  5. Geometrical properties of polynomial roots - Wikipedia

    en.wikipedia.org/wiki/Geometrical_properties_of...

    takes a negative value for some positive real value of x. In the remaining of the section, suppose that a 0 ≠ 0. If it is not the case, zero is a root, and the localization of the other roots may be studied by dividing the polynomial by a power of the indeterminate, getting a polynomial with a nonzero constant term.

  6. Polynomial root-finding - Wikipedia

    en.wikipedia.org/wiki/Polynomial_root-finding

    The oldest complete algorithm for real-root isolation results from Sturm's theorem. However, it appears to be much less efficient than the methods based on Descartes' rule of signs and Vincent's theorem. These methods divide into two main classes, one using continued fractions and the other using bisection. Both method have been dramatically ...

  7. Rational root theorem - Wikipedia

    en.wikipedia.org/wiki/Rational_root_theorem

    In algebra, the rational root theorem (or rational root test, rational zero theorem, rational zero test or p/q theorem) states a constraint on rational solutions of a polynomial equation + + + = with integer coefficients and ,.

  8. Sturm's theorem - Wikipedia

    en.wikipedia.org/wiki/Sturm's_theorem

    Sturm's theorem provides a way for isolating real roots that is less efficient (for polynomials with integer coefficients) than other methods involving Descartes' rule of signs. However, it remains useful in some circumstances, mainly for theoretical purposes, for example for algorithms of real algebraic geometry that involve infinitesimals. [3]

  9. Vincent's theorem - Wikipedia

    en.wikipedia.org/wiki/Vincent's_theorem

    If there are two or more sign variations Descartes' rule of signs implies that there may be zero, one or more real roots inside the interval (0, ∞); in this case consider separately the roots of p(x) that lie inside the interval (0, 1) from those inside the interval (1, ∞). A special test must be made for 1.