Ad
related to: is photosynthesis exergonic or endergonic
Search results
Results From The WOW.Com Content Network
An endergonic reaction (such as photosynthesis) is a reaction that requires energy to be driven. Endergonic means "absorbing energy in the form of work." The activation energy for the reaction is typically larger than the overall energy of the exergonic reaction (1). Endergonic reactions are nonspontaneous.
In chemical thermodynamics, an exergonic reaction is a chemical reaction where the change in the free energy is negative (there is a net release of free energy). [1] This indicates a spontaneous reaction if the system is closed and initial and final temperatures are the same.
An endergonic reaction is an anabolic chemical reaction that consumes energy. [3] It is the opposite of an exergonic reaction. It has a positive ΔG because it takes more energy to break the bonds of the reactant than the energy of the products offer, i.e. the products have weaker bonds than the reactants.
In general outline, photosynthesis is the opposite of cellular respiration: while photosynthesis is a process of reduction of carbon dioxide to carbohydrates, cellular respiration is the oxidation of carbohydrates or other nutrients to carbon dioxide. Nutrients used in cellular respiration include carbohydrates, amino acids and fatty acids.
The nonequilibrium thermodynamic state in plants is achieved by continuous alternation of phases of solar energy consumption as a result of photosynthesis and subsequent biochemical reactions, as a result of which adenosine triphosphate (ATP) is synthesized in the daytime, and the subsequent release of energy during the splitting of ATP mainly ...
The chain of redox reactions driving the flow of electrons through the electron transport chain, from electron donors such as NADH to electron acceptors such as oxygen and hydrogen (protons), is an exergonic process – it releases energy, whereas the synthesis of ATP is an endergonic process, which requires an input of energy.
For exergonic and endergonic reactions, see the separate articles: Endergonic reaction; Exergonic reaction; See also. Exergonic process; Endergonic; Exothermic process;
The gluconeogenesis pathway is highly endergonic until it is coupled to the hydrolysis of ATP or guanosine triphosphate (GTP), effectively making the process exergonic. For example, the pathway leading from pyruvate to glucose-6-phosphate requires 4 molecules of ATP and 2 molecules of GTP to proceed spontaneously.