When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Integral test for convergence - Wikipedia

    en.wikipedia.org/wiki/Integral_test_for_convergence

    In mathematics, the integral test for convergence is a method used to test infinite series of monotonic terms for convergence. It was developed by Colin Maclaurin and Augustin-Louis Cauchy and is sometimes known as the Maclaurin–Cauchy test .

  3. Direct comparison test - Wikipedia

    en.wikipedia.org/wiki/Direct_comparison_test

    In mathematics, the comparison test, sometimes called the direct comparison test to distinguish it from similar related tests (especially the limit comparison test), provides a way of deducing whether an infinite series or an improper integral converges or diverges by comparing the series or integral to one whose convergence properties are known.

  4. Simpson's rule - Wikipedia

    en.wikipedia.org/wiki/Simpson's_rule

    For some applications, the integration interval = [,] needs to be divided into uneven intervals – perhaps due to uneven sampling of data, or missing or corrupted data points. Suppose we divide the interval I {\\displaystyle I} into an even number N {\\displaystyle N} of subintervals of widths h k {\\displaystyle h_{k}} .

  5. Power series - Wikipedia

    en.wikipedia.org/wiki/Power_series

    Power series are useful in mathematical analysis, where they arise as Taylor series of infinitely differentiable functions. In fact, Borel's theorem implies that every power series is the Taylor series of some smooth function. In many situations, the center c is equal to zero, for instance for Maclaurin series.

  6. Convergence tests - Wikipedia

    en.wikipedia.org/wiki/Convergence_tests

    If r < 1, then the series converges absolutely. If r > 1, then the series diverges. If r = 1, the root test is inconclusive, and the series may converge or diverge. The root test is stronger than the ratio test: whenever the ratio test determines the convergence or divergence of an infinite series, the root test does too, but not conversely. [1]

  7. Radius of convergence - Wikipedia

    en.wikipedia.org/wiki/Radius_of_convergence

    Two cases arise: The first case is theoretical: when you know all the coefficients then you take certain limits and find the precise radius of convergence.; The second case is practical: when you construct a power series solution of a difficult problem you typically will only know a finite number of terms in a power series, anywhere from a couple of terms to a hundred terms.

  8. Root test - Wikipedia

    en.wikipedia.org/wiki/Root_test

    Note that sometimes a series like this is called a power series "around p", because the radius of convergence is the radius R of the largest interval or disc centred at p such that the series will converge for all points z strictly in the interior (convergence on the boundary of the interval or disc generally has to be checked separately).

  9. Dirichlet's test - Wikipedia

    en.wikipedia.org/wiki/Dirichlet's_test

    An analogous statement for convergence of improper integrals is proven using integration by parts. If the integral of a function f is uniformly bounded over all intervals , and g is a non-negative monotonically decreasing function , then the integral of fg is a convergent improper integral.