Search results
Results From The WOW.Com Content Network
In more accurate implementations, linear interpolation is used between the two neighbouring pixels that straddle the gradient direction. For example, if the gradient angle is between 89° and 180°, interpolation between gradients at the north and north-east pixels will give one interpolated value, and interpolation between the south and south ...
As many edge detection methods rely on the computation of image gradients, they also differ in the types of filters used for computing gradient estimates in the x- and y-directions. A survey of a number of different edge detection methods can be found in (Ziou and Tabbone 1998); [ 6 ] see also the encyclopedia articles on edge detection in ...
Mathematically, the gradient of a two-variable function (here the image intensity function) is at each image point a 2D vector with the components given by the derivatives in the horizontal and vertical directions. At each image point, the gradient vector points in the direction of largest possible intensity increase, and the length of the ...
Two types of gradients, with blue arrows to indicate the direction of the gradient. Light areas indicate higher pixel values A blue and green color gradient. An image gradient is a directional change in the intensity or color in an image. The gradient of the image is one of the fundamental building blocks in image processing.
where x is the initial intensity value in the image, z is the computed derivative and i,j represent the location in the image. The results of this operation will highlight changes in intensity in a diagonal direction. One of the most appealing aspects of this operation is its simplicity; the kernel is small and contains only integers.
Technically, it is a discrete differentiation operator, computing an approximation of the gradient of the image intensity function. At each point in the image, the result of the Sobel–Feldman operator is either the corresponding gradient vector or the norm of this vector. The Sobel–Feldman operator is based on convolving the image with a ...
In image processing, a kernel, convolution matrix, or mask is a small matrix used for blurring, sharpening, embossing, edge detection, and more.This is accomplished by doing a convolution between the kernel and an image.
The resulting image is larger than the original, and preserves all the original detail, but has (possibly undesirable) jaggedness. The diagonal lines of the "W", for example, now show the "stairway" shape characteristic of nearest-neighbor interpolation.