Ads
related to: dividing fractions problem solving
Search results
Results From The WOW.Com Content Network
If there is a remainder in solving a partition problem, the parts will end up with unequal sizes. For example, if 52 cards are dealt out to 5 players, then 3 of the players will receive 10 cards each, and 2 of the players will receive 11 cards each, since 52 5 = 10 + 2 5 {\textstyle {\frac {52}{5}}=10+{\frac {2}{5}}} .
If the divisor has a fractional part, one can restate the problem by moving the decimal to the right in both numbers until the divisor has no fraction, which can make the problem easier to solve (e.g., 10/2.5 = 100/25 = 4). Division can be calculated with an abacus. [14] Logarithm tables can be used to divide two numbers, by subtracting the two ...
Many similar problems of division into fractions are known from mathematics in the medieval Islamic world, [1] [4] [9] but "it does not seem that the story of the 17 camels is part of classical Arab-Islamic mathematics". [9] Supposed origins of the problem in the works of al-Khwarizmi, Fibonacci or Tartaglia also cannot be verified. [10]
The monkey and the coconuts is a mathematical puzzle in the field of Diophantine analysis that originated in a short story involving five sailors and a monkey on a desert island who divide up a pile of coconuts; the problem is to find the number of coconuts in the original pile (fractional coconuts not allowed). The problem is notorious for its ...
Such an interminable division-by-zero algorithm is physically exhibited by some mechanical calculators. [4] In partitive division, the dividend is imagined to be split into parts, and the quotient is the resulting size of each part. For example, imagine ten cookies are to be divided among two friends.
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.