Search results
Results From The WOW.Com Content Network
A sphere of radius r has surface area 4πr 2.. The surface area (symbol A) of a solid object is a measure of the total area that the surface of the object occupies. [1] The mathematical definition of surface area in the presence of curved surfaces is considerably more involved than the definition of arc length of one-dimensional curves, or of the surface area for polyhedra (i.e., objects with ...
The formula for the surface area of a sphere is more difficult to derive: because a sphere has nonzero Gaussian curvature, it cannot be flattened out. The formula for the surface area of a sphere was first obtained by Archimedes in his work On the Sphere and Cylinder. The formula is: [6] A = 4πr 2 (sphere), where r is the radius of the sphere.
Shoelace scheme for determining the area of a polygon with point coordinates (,),..., (,). The shoelace formula, also known as Gauss's area formula and the surveyor's formula, [1] is a mathematical algorithm to determine the area of a simple polygon whose vertices are described by their Cartesian coordinates in the plane. [2]
The basic quantities describing a sphere (meaning a 2-sphere, a 2-dimensional surface inside 3-dimensional space) will be denoted by the following variables r {\displaystyle r} is the radius, C = 2 π r {\displaystyle C=2\pi r} is the circumference (the length of any one of its great circles ),
The area of a regular polygon is half its perimeter multiplied by the distance from its center to its sides, and because the sequence tends to a circle, the corresponding formula–that the area is half the circumference times the radius–namely, A = 1 / 2 × 2πr × r, holds for a circle.
Its surface area is four times the area of an equilateral triangle: = =. [7] Its volume can be ascertained similarly as the other pyramids, one-third of the base times height. Because the base is an equilateral, it is: [ 7 ] V = 1 3 ⋅ ( 3 4 a 2 ) ⋅ 6 3 a = a 3 6 2 ≈ 0.118 a 3 . {\displaystyle V={\frac {1}{3}}\cdot \left({\frac {\sqrt {3 ...
The surface area of a polyhedron is the sum of areas of its faces, for definitions of polyhedra for which the area of a face is well-defined. The geodesic distance between any two points on the surface of a polyhedron measures the length of the shortest curve that connects the two points, remaining within the surface.
A sphere is the surface of a solid ball, here having radius r. In mathematics, a surface is a mathematical model of the common concept of a surface.It is a generalization of a plane, but, unlike a plane, it may be curved; this is analogous to a curve generalizing a straight line.