When.com Web Search

  1. Ad

    related to: calculate interior angles of triangle math formula

Search results

  1. Results From The WOW.Com Content Network
  2. Internal and external angles - Wikipedia

    en.wikipedia.org/wiki/Internal_and_external_angles

    The formula can be proved by using mathematical induction: starting with a triangle, for which the angle sum is 180°, then replacing one side with two sides connected at another vertex, and so on. The sum of the external angles of any simple polygon, if only one of the two external angles is assumed at each vertex, is 2π radians (360°).

  3. Triangle - Wikipedia

    en.wikipedia.org/wiki/Triangle

    An exterior angle of a triangle is an angle that is a linear pair (and hence supplementary) to an interior angle. The measure of an exterior angle of a triangle is equal to the sum of the measures of the two interior angles that are not adjacent to it; this is the exterior angle theorem. [34]

  4. Thales's theorem - Wikipedia

    en.wikipedia.org/wiki/Thales's_theorem

    Since OA = OB = OC, OBA and OBC are isosceles triangles, and by the equality of the base angles of an isosceles triangle, ∠ OBC = ∠ OCB and ∠ OBA = ∠ OAB. Let α = ∠ BAO and β = ∠ OBC. The three internal angles of the ∆ABC triangle are α, (α + β), and β. Since the sum of the angles of a triangle is equal to 180°, we have

  5. Gauss–Bonnet theorem - Wikipedia

    en.wikipedia.org/wiki/Gauss–Bonnet_theorem

    In the mathematical field of differential geometry, the Gauss–Bonnet theorem (or Gauss–Bonnet formula) is a fundamental formula which links the curvature of a surface to its underlying topology. In the simplest application, the case of a triangle on a plane , the sum of its angles is 180 degrees. [ 1 ]

  6. Spherical trigonometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_trigonometry

    The angles of proper spherical triangles are (by convention) less than π, so that < + + < (Todhunter, [1] Art.22,32). In particular, the sum of the angles of a spherical triangle is strictly greater than the sum of the angles of a triangle defined on the Euclidean plane, which is always exactly π radians.

  7. AA postulate - Wikipedia

    en.wikipedia.org/wiki/AA_postulate

    In Euclidean geometry, the AA postulate states that two triangles are similar if they have two corresponding angles congruent. The AA postulate follows from the fact that the sum of the interior angles of a triangle is always equal to 180°. By knowing two angles, such as 32° and 64° degrees, we know that the next angle is 84°, because 180 ...

  8. Sum of angles of a triangle - Wikipedia

    en.wikipedia.org/wiki/Sum_of_angles_of_a_triangle

    An easy formula for these properties is that in any three points in any shape, there is a triangle formed. Triangle ABC (example) has 3 points, and therefore, three angles; angle A, angle B, and angle C. Angle A, B, and C will always, when put together, will form 360 degrees. So, ∠A + ∠B + ∠C = 360°

  9. Euclidean geometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_geometry

    The sum of the angles of a triangle is equal to a straight angle (180 degrees). [14] This causes an equilateral triangle to have three interior angles of 60 degrees. Also, it causes every triangle to have at least two acute angles and up to one obtuse or right angle.