When.com Web Search

  1. Ads

    related to: can a fraction be polynomial function worksheet 7th

Search results

  1. Results From The WOW.Com Content Network
  2. Hilbert's seventeenth problem - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_seventeenth_problem

    A result of Albrecht Pfister [8] shows that a positive semidefinite form in n variables can be expressed as a sum of 2 n squares. [9] Dubois showed in 1967 that the answer is negative in general for ordered fields. [10] In this case one can say that a positive polynomial is a sum of weighted squares of rational functions with positive ...

  3. Partial fraction decomposition - Wikipedia

    en.wikipedia.org/wiki/Partial_fraction_decomposition

    In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction (that is, a fraction such that the numerator and the denominator are both polynomials) is an operation that consists of expressing the fraction as a sum of a polynomial (possibly zero) and one or several fractions with a simpler denominator. [1]

  4. Rational function - Wikipedia

    en.wikipedia.org/wiki/Rational_function

    Every Laurent polynomial can be written as a rational function while the converse is not necessarily true, i.e., the ring of Laurent polynomials is a subring of the rational functions. The rational function f ( x ) = x x {\displaystyle f(x)={\tfrac {x}{x}}} is equal to 1 for all x except 0, where there is a removable singularity .

  5. Partial fractions in complex analysis - Wikipedia

    en.wikipedia.org/wiki/Partial_fractions_in...

    Just as polynomial factorization can be generalized to the Weierstrass factorization theorem, there is an analogy to partial fraction expansions for certain meromorphic functions. A proper rational function (one for which the degree of the denominator is greater than the degree of the numerator) has a partial fraction expansion with no ...

  6. Function field of an algebraic variety - Wikipedia

    en.wikipedia.org/wiki/Function_field_of_an...

    In algebraic geometry, the function field of an algebraic variety V consists of objects that are interpreted as rational functions on V.In classical algebraic geometry they are ratios of polynomials; in complex geometry these are meromorphic functions and their higher-dimensional analogues; in modern algebraic geometry they are elements of some quotient ring's field of fractions.

  7. Solving quadratic equations with continued fractions - Wikipedia

    en.wikipedia.org/wiki/Solving_quadratic...

    Unfortunately, this particular continued fraction does not converge to a finite number in every case. We can easily see that this is so by considering the quadratic formula and a monic polynomial with real coefficients. If the discriminant of such a polynomial is negative, then both roots of the quadratic equation have imaginary parts.