Ads
related to: can a fraction be polynomial function worksheet pdfstudy.com has been visited by 100K+ users in the past month
education.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction (that is, a fraction such that the numerator and the denominator are both polynomials) is an operation that consists of expressing the fraction as a sum of a polynomial (possibly zero) and one or several fractions with a simpler denominator. [1]
If this infinite continued fraction converges at all, it must converge to one of the roots of the monic polynomial x 2 + bx + c = 0. Unfortunately, this particular continued fraction does not converge to a finite number in every case. We can easily see that this is so by considering the quadratic formula and a
Just as polynomial factorization can be generalized to the Weierstrass factorization theorem, there is an analogy to partial fraction expansions for certain meromorphic functions. A proper rational function (one for which the degree of the denominator is greater than the degree of the numerator) has a partial fraction expansion with no ...
Every Laurent polynomial can be written as a rational function while the converse is not necessarily true, i.e., the ring of Laurent polynomials is a subring of the rational functions. The rational function f ( x ) = x x {\displaystyle f(x)={\tfrac {x}{x}}} is equal to 1 for all x except 0, where there is a removable singularity .
A simple fraction contains no fraction either in its numerator or its denominator. A fraction is in lowest terms if the only factor common to the numerator and the denominator is 1. An expression which is not in fractional form is an integral expression. An integral expression can always be written in fractional form by giving it the denominator 1.
Polynomial function: defined by evaluating a polynomial. Rational function: ratio of two polynomial functions. In particular, Möbius transformation called also linear fractional function. Algebraic function: defined as the root of a polynomial equation. Transcendental function: analytic but not algebraic.