Search results
Results From The WOW.Com Content Network
In chemistry, an acid–base reaction is a chemical reaction that occurs between an acid and a base.It can be used to determine pH via titration.Several theoretical frameworks provide alternative conceptions of the reaction mechanisms and their application in solving related problems; these are called the acid–base theories, for example, Brønsted–Lowry acid–base theory.
Ammonium salts behave as acids, and metal amides behave as bases. [10] Some non-aqueous solvents can behave as bases, i.e. accept protons, in relation to Brønsted–Lowry acids. + + + where S stands for a solvent molecule.
Base extraction is achieved by processing the raw material with alkaline solutions and extracting the alkaloid bases with organic solvents, such as 1,2-dichloroethane, chloroform, diethyl ether or benzene. Then, the impurities are dissolved by weak acids; this converts alkaloid bases into salts that are washed away with water.
An acid salt can be mixed with certain base salt (such as sodium bicarbonate or baking soda) to create baking powders which release carbon dioxide. [10] Leavening agents can be slow-acting (e.g. sodium aluminum phosphate ) which react when heated, or fast-acting (e.g., cream of tartar) which react immediately at low temperatures.
One use of conjugate acids and bases lies in buffering systems, which include a buffer solution. In a buffer, a weak acid and its conjugate base (in the form of a salt), or a weak base and its conjugate acid, are used in order to limit the pH change during a titration process. Buffers have both organic and non-organic chemical applications.
In chemistry, an amphoteric compound (from Greek amphoteros 'both') is a molecule or ion that can react both as an acid and as a base. [1] What exactly this can mean depends on which definitions of acids and bases are being used.
Enjoy a classic game of Hearts and watch out for the Queen of Spades!
The E and C parameters refer, respectively, to the electrostatic and covalent contributions to the strength of the bonds that the acid and base will form. The equation is -ΔH = E A E B + C A C B + W. The W term represents a constant energy contribution for acid–base reaction such as the cleavage of a dimeric acid or base. The equation ...