Search results
Results From The WOW.Com Content Network
An infinite set of vectors is linearly independent if every nonempty finite subset is linearly independent. Conversely, an infinite set of vectors is linearly dependent if it contains a finite subset that is linearly dependent, or equivalently, if some vector in the set is a linear combination of other vectors in the set.
The dependent sets of columns in the matroid are those that are linearly dependent as vectors. This matroid is called the column matroid of , and is said to represent. For instance, the Fano matroid can be represented in this way as a 3 × 7 (0,1) matrix. Column matroids are just vector matroids under another name, but there are often reasons ...
Because the vectors usually soon become almost linearly dependent due to the properties of power iteration, methods relying on Krylov subspace frequently involve some orthogonalization scheme, such as Lanczos iteration for Hermitian matrices or Arnoldi iteration for more general matrices.
Any other pair of linearly independent vectors of R 2, such as (1, 1) and (−1, 2), forms also a basis of R 2. More generally, if F is a field , the set F n {\displaystyle F^{n}} of n -tuples of elements of F is a vector space for similarly defined addition and scalar multiplication.
It follows that Ax 1, Ax 2, …, Ax r are linearly independent. Now, each Ax i is obviously a vector in the column space of A. So, Ax 1, Ax 2, …, Ax r is a set of r linearly independent vectors in the column space of A and, hence, the dimension of the column space of A (i.e., the column rank of A) must be at least as big as r.
For example, the set of all vectors (x, y, z) (over real or rational numbers) satisfying the equations + + = + = is a one-dimensional subspace. More generally, that is to say that given a set of n independent functions, the dimension of the subspace in K k will be the dimension of the null set of A , the composite matrix of the n functions.
In signal processing, it is common to represent signals as vectors in a Hilbert space. In this interpretation, a vector expressed as a linear combination of the frame vectors is a redundant signal. Representing a signal strictly with a set of linearly independent vectors may not always be the most compact form. [13]
In the mathematical theory of matroids, a matroid representation is a family of vectors whose linear independence relation is the same as that of a given matroid. Matroid representations are analogous to group representations; both types of representation provide abstract algebraic structures (matroids and groups respectively) with concrete descriptions in terms of linear algebra.