When.com Web Search

  1. Ad

    related to: cartesian plane with points examples problems practice video

Search results

  1. Results From The WOW.Com Content Network
  2. Cartesian coordinate system - Wikipedia

    en.wikipedia.org/wiki/Cartesian_coordinate_system

    A Euclidean plane with a chosen Cartesian coordinate system is called a Cartesian plane. In a Cartesian plane, one can define canonical representatives of certain geometric figures, such as the unit circle (with radius equal to the length unit, and center at the origin), the unit square (whose diagonal has endpoints at (0, 0) and (1, 1)), the ...

  3. Coordinate system - Wikipedia

    en.wikipedia.org/wiki/Coordinate_system

    A point in the plane may be represented in homogeneous coordinates by a triple (x, y, z) where x/z and y/z are the Cartesian coordinates of the point. [10] This introduces an "extra" coordinate since only two are needed to specify a point on the plane, but this system is useful in that it represents any point on the projective plane without the ...

  4. Rotation of axes in two dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_of_axes_in_two...

    A point P has coordinates (x, y) with respect to the original system and coordinates (x′, y′) with respect to the new system. [1] In the new coordinate system, the point P will appear to have been rotated in the opposite direction, that is, clockwise through the angle . A rotation of axes in more than two dimensions is defined similarly.

  5. Abscissa and ordinate - Wikipedia

    en.wikipedia.org/wiki/Abscissa_and_ordinate

    Cartesian plane with marked points (signed ordered pairs of coordinates). For any point, the abscissa is the first value (x coordinate), and the ordinate is the second value (y coordinate). In mathematics , the abscissa ( / æ b ˈ s ɪ s . ə / ; plural abscissae or abscissas ) and the ordinate are respectively the first and second coordinate ...

  6. Plane (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Plane_(mathematics)

    A projective plane can be thought of as an ordinary plane equipped with additional "points at infinity" where parallel lines intersect. Thus any two distinct lines in a projective plane intersect at exactly one point. Renaissance artists, in developing the techniques of drawing in perspective, laid the groundwork for this mathematical topic.

  7. Translation of axes - Wikipedia

    en.wikipedia.org/wiki/Translation_of_axes

    For an xyz-Cartesian coordinate system in three dimensions, suppose that a second Cartesian coordinate system is introduced, with axes x', y' and z' so located that the x' axis is parallel to the x axis and h units from it, the y' axis is parallel to the y axis and k units from it, and the z' axis is parallel to the z axis and l units from it.

  8. Quadrant (plane geometry) - Wikipedia

    en.wikipedia.org/wiki/Quadrant_(plane_geometry)

    The four quadrants of a Cartesian coordinate system. The axes of a two-dimensional Cartesian system divide the plane into four infinite regions, called quadrants, each bounded by two half-axes. The axes themselves are, in general, not part of the respective quadrants.

  9. Euclidean plane - Wikipedia

    en.wikipedia.org/wiki/Euclidean_plane

    A Euclidean plane with a chosen Cartesian coordinate system is called a Cartesian plane. The set R 2 {\displaystyle \mathbb {R} ^{2}} of the ordered pairs of real numbers (the real coordinate plane ), equipped with the dot product , is often called the Euclidean plane or standard Euclidean plane , since every Euclidean plane is isomorphic to it.