When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Arbitrary-precision arithmetic - Wikipedia

    en.wikipedia.org/wiki/Arbitrary-precision_arithmetic

    Arbitrary precision is used in applications where the speed of arithmetic is not a limiting factor, or where precise results with very large numbers are required. It should not be confused with the symbolic computation provided by many computer algebra systems , which represent numbers by expressions such as π ·sin(2) , and can thus represent ...

  3. File:A Byte of Python.pdf - Wikipedia

    en.wikipedia.org/wiki/File:A_Byte_of_Python.pdf

    You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.

  4. Rational data type - Wikipedia

    en.wikipedia.org/wiki/Rational_data_type

    FatRat [5] data type implements arbitrary-precision rational numbers. Python: The standard library includes a Fraction class in the module fractions. [6] Ruby: native support using special syntax. Smalltalk represents rational numbers using a Fraction class in the form p/q where p and q are arbitrary size integers.

  5. Integer factorization - Wikipedia

    en.wikipedia.org/wiki/Integer_factorization

    To factorize a small integer n using mental or pen-and-paper arithmetic, the simplest method is trial division: checking if the number is divisible by prime numbers 2, 3, 5, and so on, up to the square root of n. For larger numbers, especially when using a computer, various more sophisticated factorization algorithms are more efficient.

  6. Integer overflow - Wikipedia

    en.wikipedia.org/wiki/Integer_overflow

    The register width of a processor determines the range of values that can be represented in its registers. Though the vast majority of computers can perform multiple-precision arithmetic on operands in memory, allowing numbers to be arbitrarily long and overflow to be avoided, the register width limits the sizes of numbers that can be operated on (e.g., added or subtracted) using a single ...

  7. Karatsuba algorithm - Wikipedia

    en.wikipedia.org/wiki/Karatsuba_algorithm

    The basic principle of Karatsuba's algorithm is divide-and-conquer, using a formula that allows one to compute the product of two large numbers and using three multiplications of smaller numbers, each with about half as many digits as or , plus some additions and digit shifts.

  8. LibreOffice Calc - Wikipedia

    en.wikipedia.org/wiki/LibreOffice_Calc

    LibreOffice Calc is the spreadsheet component of the LibreOffice software package. [5] [6]After forking from OpenOffice.org in 2010, LibreOffice Calc underwent a massive re-work of external reference handling to fix many defects in formula calculations involving external references, and to boost data caching performance, especially when referencing large data ranges.

  9. Knuth's up-arrow notation - Wikipedia

    en.wikipedia.org/wiki/Knuth's_up-arrow_notation

    In mathematics, Knuth's up-arrow notation is a method of notation for very large integers, introduced by Donald Knuth in 1976. [1]In his 1947 paper, [2] R. L. Goodstein introduced the specific sequence of operations that are now called hyperoperations.