Search results
Results From The WOW.Com Content Network
Absorption half-life 1 h, elimination half-life 12 h. Biological half-life (elimination half-life, pharmacological half-life) is the time taken for concentration of a biological substance (such as a medication) to decrease from its maximum concentration (C max) to half of C max in the blood plasma.
The plasma half-life or half life of elimination is the time required to eliminate 50% of the absorbed dose of a drug from an organism. Or put another way, the time that it takes for the plasma concentration to fall by half from its maximum levels.
When radionuclides are used pharmacologically, for example in radiation therapy, they are eliminated through a combination of radioactive decay and biological excretion.An effective half-life of the drug will involve a decay constant that represents the sum of the biological and physical decay constants, as in the formula:
The study found that Americans born in 2019 will spend about half of their lives taking prescription drugs, with American men and women projected to spend 48 percent and 60 percent of their lives ...
A drug's characteristics make a clear distinction between tissues with high and low blood flow. Enzymatic saturation: When the dose of a drug whose elimination depends on biotransformation is increased above a certain threshold the enzymes responsible for its metabolism become saturated. The drug's plasma concentration will then increase ...
The area under the effect curve (AUEC) is an integral of the effect of a drug over time, estimated as a previously-established function of concentration. It was proposed to be used instead of AUC in animal-to-human dose translation, as computer simulation shows that it could cope better with half-life and dosing
For example, the medical sciences refer to the biological half-life of drugs and other chemicals in the human body. The converse of half-life (in exponential growth) is doubling time. The original term, half-life period, dating to Ernest Rutherford's discovery of the principle in 1907, was shortened to half-life in the early 1950s. [1]
There is an important relationship between clearance, elimination half-life and distribution volume. The elimination rate constant of a drug K e l {\displaystyle K_{el}} is equivalent to total clearance divided by the distribution volume