Search results
Results From The WOW.Com Content Network
In mathematics, the disjoint union (or discriminated union) of the sets A and B is the set formed from the elements of A and B labelled (indexed) with the name of the set from which they come. So, an element belonging to both A and B appears twice in the disjoint union, with two different labels.
The disjoint union space X, together with the canonical injections, can be characterized by the following universal property: If Y is a topological space, and f i : X i → Y is a continuous map for each i ∈ I, then there exists precisely one continuous map f : X → Y such that the following set of diagrams commute:
In graph theory, a cograph, or complement-reducible graph, or P 4-free graph, is a graph that can be generated from the single-vertex graph K 1 by complementation and disjoint union. That is, the family of cographs is the smallest class of graphs that includes K 1 and is closed under complementation and disjoint union.
The coproduct in the category of sets is simply the disjoint union with the maps i j being the inclusion maps.Unlike direct products, coproducts in other categories are not all obviously based on the notion for sets, because unions don't behave well with respect to preserving operations (e.g. the union of two groups need not be a group), and so coproducts in different categories can be ...
The important special case where the family of maps consists of a single surjective map can be completely characterized using the notion of quotient map.A surjective function : (,) (,) between topological spaces is a quotient map if and only if the topology on coincides with the final topology induced by the family = {}.
A wedge sum of two circles. In topology, the wedge sum is a "one-point union" of a family of topological spaces.Specifically, if X and Y are pointed spaces (i.e. topological spaces with distinguished basepoints and ) the wedge sum of X and Y is the quotient space of the disjoint union of X and Y by the identification : = /,
The union is the join/supremum of and with respect to because: L ⊆ L ∪ R {\displaystyle L\subseteq L\cup R} and R ⊆ L ∪ R , {\displaystyle R\subseteq L\cup R,} and if Z {\displaystyle Z} is a set such that L ⊆ Z {\displaystyle L\subseteq Z} and R ⊆ Z {\displaystyle R\subseteq Z} then L ∪ R ⊆ Z . {\displaystyle L\cup R\subseteq Z.}
The pushout of f and g is the disjoint union of X and Y, where elements sharing a common preimage (in Z) are identified, together with the morphisms i 1, i 2 from X and Y, i.e. = / where ~ is the finest equivalence relation (cf. also this) such that f(z) ~ g(z) for all z in Z.