When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Dispersion relation - Wikipedia

    en.wikipedia.org/wiki/Dispersion_relation

    Given the dispersion relation, one can calculate the frequency-dependent phase velocity and group velocity of each sinusoidal component of a wave in the medium, as a function of frequency. In addition to the geometry-dependent and material-dependent dispersion relations, the overarching Kramers–Kronig relations describe the frequency ...

  3. Group-velocity dispersion - Wikipedia

    en.wikipedia.org/wiki/Group-velocity_dispersion

    In optics, group-velocity dispersion (GVD) is a characteristic of a dispersive medium, used most often to determine how the medium affects the duration of an optical pulse traveling through it. Formally, GVD is defined as the derivative of the inverse of group velocity of light in a material with respect to angular frequency , [ 1 ] [ 2 ]

  4. Velocity dispersion - Wikipedia

    en.wikipedia.org/wiki/Velocity_dispersion

    A central velocity dispersion refers to the σ of the interior regions of an extended object, such as a galaxy or cluster. The relationship between velocity dispersion and matter (or the observed electromagnetic radiation emitted by this matter) takes several forms – specific correlations – in astronomy based on the object(s) being observed.

  5. Dispersion (optics) - Wikipedia

    en.wikipedia.org/wiki/Dispersion_(optics)

    Group-velocity dispersion is quantified as the derivative of the reciprocal of the group velocity with respect to angular frequency, which results in group-velocity dispersion = d 2 k/dω 2. If a light pulse is propagated through a material with positive group-velocity dispersion, then the shorter-wavelength components travel slower than the ...

  6. Dispersion (water waves) - Wikipedia

    en.wikipedia.org/wiki/Dispersion_(water_waves)

    Dispersion of gravity waves on a fluid surface. Phase and group velocity divided by shallow-water phase velocity √ gh as a function of relative depth h / λ. Blue lines (A): phase velocity; Red lines (B): group velocity; Black dashed line (C): phase and group velocity √ gh valid in shallow water.

  7. Group velocity - Wikipedia

    en.wikipedia.org/wiki/Group_velocity

    Frequency dispersion in groups of gravity waves on the surface of deep water. The red square moves with the phase velocity, and the green circles propagate with the group velocity. In this deep-water case, the phase velocity is twice the group velocity. The red square overtakes two green circles when moving from the left to the right of the figure.

  8. Phase velocity - Wikipedia

    en.wikipedia.org/wiki/Phase_velocity

    Frequency dispersion in groups of gravity waves on the surface of deep water. The red square moves with the phase velocity, and the green circles propagate with the group velocity. In this deep-water case, the phase velocity is twice the group velocity. The red square overtakes two green circles when moving from the left to the right of the figure.

  9. Dispersive body waves - Wikipedia

    en.wikipedia.org/wiki/Dispersive_body_waves

    When we know the energy dissipation (attenuation), we can calculate the time shift due to dispersion because there is a relation between attenuation and the dispersion in a seismic media. Dispersion equations are obtained from the application of an integral transform in the frequency domain that are of the Kramers-Krönig type.