Search results
Results From The WOW.Com Content Network
Photosynthesis is the main means by which plants, algae and many bacteria produce organic compounds and oxygen from carbon dioxide and water (green arrow). An autotroph is an organism that can convert abiotic sources of energy into energy stored in organic compounds, which can be used by other organisms.
There are multiple hypotheses for how oxygenic photosynthesis evolved. The loss hypothesis states that PSI and PSII were present in anoxygenic ancestor cyanobacteria from which the different branches of anoxygenic bacteria evolved. [5] The fusion hypothesis states that the photosystems merged later through horizontal gene transfer. [5]
Chemoautotrophs generally fall into several groups: methanogens, sulfur oxidizers and reducers, nitrifiers, anammox bacteria, and thermoacidophiles. An example of one of these prokaryotes would be Sulfolobus. Chemolithotrophic growth can be dramatically fast, such as Hydrogenovibrio crunogenus with a doubling time around one hour. [2] [3]
Of the other autotrophic pathways, three are known only in bacteria (the reductive citric acid cycle, the 3-hydroxypropionate cycle, and the reductive glycine pathway), two only in archaea (two variants of the 3-hydroxypropionate cycle), and one in both bacteria and archaea (the reductive acetyl CoA pathway).
Cyanobacteria (/ s aɪ ˌ æ n oʊ b æ k ˈ t ɪər i. ə /) are a group of autotrophic gram-negative bacteria [7] of the phylum Cyanobacteriota that can obtain biological energy via oxygenic photosynthesis.
For example, cyanobacteria and many purple sulfur bacteria can be photolithoautotrophic, using light for energy, H 2 O or sulfide as electron/hydrogen donors, and CO 2 as carbon source, whereas green non-sulfur bacteria can be photoorganoheterotrophic, using organic molecules as both electron/hydrogen donors and carbon sources.
Endospore-forming bacteria can cause disease; for example, anthrax can be contracted by the inhalation of Bacillus anthracis endospores, and contamination of deep puncture wounds with Clostridium tetani endospores causes tetanus, which, like botulism, is caused by a toxin released by the bacteria that grow from the spores. [101]
Autotrophs are vital to all ecosystems because all organisms need organic molecules, and only autotrophs can produce them from inorganic compounds. [1] Autotrophs are classified as either photoautotrophs (which get energy from the sun, like plants) or chemoautotrophs (which get energy from chemical bonds, like certain bacteria).