Search results
Results From The WOW.Com Content Network
To distinguish these two thermal expansion equations of state, the latter one is called pressure-dependent thermal expansion equation of state. To deveop the pressure-dependent thermal expansion equation of state, in an compression process at room temperature from (V 0, T 0, P 0) to (V 1, T 0,P 1), a general form of volume is expressed as
Regardless of the equation format, the heat of formation of a compound at any temperature is ΔH° form at 298.15 K, plus the sum of the heat content parameters of the products minus the sum of the heat content parameters of the reactants. The C p equation is obtained by taking the derivative of the heat content equation.
A number of materials contract on heating within certain temperature ranges; this is usually called negative thermal expansion, rather than "thermal contraction".For example, the coefficient of thermal expansion of water drops to zero as it is cooled to 3.983 °C (39.169 °F) and then becomes negative below this temperature; this means that water has a maximum density at this temperature, and ...
Each pair in the equation are known as a conjugate pair with respect to the internal energy. The intensive variables may be viewed as a generalized "force". An imbalance in the intensive variable will cause a "flow" of the extensive variable in a direction to counter the imbalance. The equation may be seen as a particular case of the chain rule.
is pressure, temperature, volume, entropy, coefficient of thermal expansion, compressibility, heat capacity at constant volume, heat capacity at constant pressure. Maxwell's relations are a set of equations in thermodynamics which are derivable from the symmetry of second derivatives and from the definitions of the thermodynamic potentials .
A temperature-corrected version that is used in computational mechanics has the form [6] [7]: 61 = [] +;:= where is the bulk speed of sound, is the initial density, is the current density, is Grüneisen's gamma at the reference state, = / is a linear Hugoniot slope coefficient, is the shock wave velocity, is the particle velocity, and is the internal energy per unit reference volume.
Many thermodynamic equations are expressed in terms of partial derivatives. For example, the expression for the heat capacity at constant pressure is: = which is the partial derivative of the enthalpy with respect to temperature while holding pressure constant.
The definition of the Gibbs function is = + where H is the enthalpy defined by: = +. Taking differentials of each definition to find dH and dG, then using the fundamental thermodynamic relation (always true for reversible or irreversible processes): = where S is the entropy, V is volume, (minus sign due to reversibility, in which dU = 0: work other than pressure-volume may be done and is equal ...