Search results
Results From The WOW.Com Content Network
Apollo Command Module primary guidance system components Apollo Lunar Module primary guidance system components Apollo Inertial Measurement Unit. The Apollo primary guidance, navigation, and control system (PGNCS, pronounced pings) was a self-contained inertial guidance system that allowed Apollo spacecraft to carry out their missions when communications with Earth were interrupted, either as ...
Inertial guidance accelerometers, like those in intercontinental ballistic missiles, were particularly suited to the purpose of an astronaut operated traversal gravimeter due to three main attributes: a large range of sensitivity, comparatively small size and weight, and the ability to calibrate the instrument under low acceleration conditions.
The Apollo Lunar Surface Experiments Package (ALSEP) comprised a set of scientific instruments placed by the astronauts at the landing site of each of the five Apollo missions to land on the Moon following Apollo 11 (Apollos 12, 14, 15, 16, and 17). Apollo 11 left a smaller package called the Early Apollo Scientific Experiments Package, or EASEP.
IBM. "Instrument Unit System Description and Component Data." This lists, in Table 1, all components by name, part number, reference designation and location for IU-201 to -212 and IU-501 to -515. It also includes photos of many components. The change history page lists six changes, the latest being January 1970, the year IU-508 was launched.
An astronomical instrument is a device for observing, measuring or recording astronomical data. They are used in the scientific field of astronomy , a natural science that studies celestial objects and the phenomena that occur in the cosmos, with the object of explaining their origin and evolution over time.
The ST-124-M3 inertial platform was a device for measuring acceleration and attitude of the Saturn V launch vehicle. It was carried by the Saturn V Instrument Unit , a 3-foot-high (0.91 m), 22-foot-diameter (6.7 m) section of the Saturn V that fit between the third stage (S-IVB) and the Apollo spacecraft.
More than 50 years after humans first began soft-landing spacecraft on the moon, it remains a treacherous feat with more than half of missions failing. Here’s why.
A lunar magnetometer experiment had a number of requirements that shaped its capabilities. The instrument needed to be able to operate during the lunar night since it was believed the collection of data from a full lunar rotation would be required. The instrument also needed to be able to perform its own self-calibrations on a regular cadence ...