Search results
Results From The WOW.Com Content Network
The concept that matter behaves like a wave was proposed by French physicist Louis de Broglie (/ d ə ˈ b r ɔɪ /) in 1924, and so matter waves are also known as de Broglie waves. The de Broglie wavelength is the wavelength , λ , associated with a particle with momentum p through the Planck constant , h : λ = h p . {\displaystyle \lambda ...
In physics, the thermal de Broglie wavelength (, sometimes also denoted by ) is a measure of the uncertainty in location of a particle of thermodynamic average momentum in an ideal gas. [1] It is roughly the average de Broglie wavelength of particles in an ideal gas at the specified temperature.
De Broglie proposed that the frequency f of a matter wave equals E/h, where E is the total energy of the particle and h is the Planck constant.For a particle at rest, the relativistic equation E=mc 2 allows the derivation of the Compton frequency f for a stationary massive particle, equal to mc 2 /h.
This animation portrays the de Broglie phase and group velocities (in slow motion) of three free electrons traveling over a field 0.4 ångströms in width. The momentum per unit mass (proper velocity) of the middle electron is lightspeed, so that its group velocity is 0.707 c. The top electron has twice the momentum, while the bottom electron ...
The wavelength associated with a non-relativistic particle is the de Broglie wavelength =, where is the Planck constant and is the momentum of the particle (mass × velocity for slow-moving particles). For example, a sodium atom traveling at about 300 m/s would have a de Broglie wavelength of about 50 picometres.
Majorana produced other important contributions that were unpublished, including wave equations of various dimensions (5, 6, and 16). They were anticipated later (in a more involved way) by de Broglie (1934), and Duffin, Kemmer, and Petiau (around 1938–1939) see Duffin–Kemmer–Petiau algebra. The Dirac–Fierz–Pauli formalism was more ...
In the framework of the de Broglie–Bohm theory, the quantum potential is a term within the Schrödinger equation which acts to guide the movement of quantum particles. . The quantum potential approach introduced by Bohm [1] [2] provides a physically less fundamental exposition of the idea presented by Louis de Broglie: de Broglie had postulated in 1925 that the relativistic wave function ...
Louis de Broglie's early results on the pilot wave theory were presented in his thesis (1924) in the context of atomic orbitals where the waves are stationary.Early attempts to develop a general formulation for the dynamics of these guiding waves in terms of a relativistic wave equation were unsuccessful until in 1926 Schrödinger developed his non-relativistic wave equation.