Search results
Results From The WOW.Com Content Network
Given a function that accepts an array, a range query (,) on an array = [,..,] takes two indices and and returns the result of when applied to the subarray [, …,].For example, for a function that returns the sum of all values in an array, the range query (,) returns the sum of all values in the range [,].
The formula for an integration by parts is () ′ = [() ()] ′ ().. Beside the boundary conditions, we notice that the first integral contains two multiplied functions, one which is integrated in the final integral (′ becomes ) and one which is differentiated (becomes ′).
Fix a complex number .If = for and () =, then () = ⌊ ⌋ and the formula becomes = ⌊ ⌋ = ⌊ ⌋ + ⌊ ⌋ +. If () >, then the limit as exists and yields the ...
Two partial words are compatible when they agree on their non-wildcard characters, or equivalently when there is a string that they both match; one partial word contains another partial word if they are compatible and the non-wildcard positions of contain those of ; equivalently, the strings matched by are a subset of those matched by .
Prefix sums are trivial to compute in sequential models of computation, by using the formula y i = y i − 1 + x i to compute each output value in sequence order. However, despite their ease of computation, prefix sums are a useful primitive in certain algorithms such as counting sort, [1] [2] and they form the basis of the scan higher-order function in functional programming languages.
If the array contains all non-negative numbers, then the problem is trivial; a maximum subarray is the entire array. If the array contains all non-positive numbers, then a solution is any subarray of size 1 containing the maximal value of the array (or the empty subarray, if it is permitted).
f is injective: each value () for a in N must be distinct from every other, and so each b in X may occur at most once in the image of f. f is surjective : for each b in X there must be at least one a in N such that f ( a ) = b {\displaystyle f(a)=b} , thus each b will occur at least once in the image of f .
The assignment problem consists of finding, in a weighted bipartite graph, a matching of maximum size, in which the sum of weights of the edges is minimum. If the numbers of agents and tasks are equal, then the problem is called balanced assignment, and the graph-theoretic version is called minimum-cost perfect matching.