When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. The Ancient Tradition of Geometric Problems - Wikipedia

    en.wikipedia.org/wiki/The_Ancient_Tradition_of...

    The Ancient Tradition of Geometric Problems studies the three classical problems of circle-squaring, cube-doubling, and angle trisection throughout the history of Greek mathematics, [1] [2] also considering several other problems studied by the Greeks in which a geometric object with certain properties is to be constructed, in many cases through transformations to other construction problems. [2]

  3. Dinostratus - Wikipedia

    en.wikipedia.org/wiki/Dinostratus

    Dinostratus' chief contribution to mathematics was his solution to the problem of squaring the circle. To solve this problem, Dinostratus made use of the trisectrix of Hippias, for which he proved a special property (Dinostratus' theorem) that allowed him the squaring of the circle.

  4. Squaring the circle - Wikipedia

    en.wikipedia.org/wiki/Squaring_the_circle

    Bending the rules by introducing a supplemental tool, allowing an infinite number of compass-and-straightedge operations or by performing the operations in certain non-Euclidean geometries makes squaring the circle possible in some sense. For example, Dinostratus' theorem uses the quadratrix of Hippias to square the circle, meaning that if this ...

  5. Greek mathematics - Wikipedia

    en.wikipedia.org/wiki/Greek_mathematics

    Greek mathematics [a] reached its acme during the Hellenistic and early Roman periods, and much of the work represented by authors such as Euclid (fl. 300 BC), Archimedes (c. 287–212 BC), Apollonius (c. 240–190 BC), Hipparchus (c. 190–120 BC), and Ptolemy (c. 100–170 AD) was of a very advanced level and rarely mastered outside a small ...

  6. Thales's theorem - Wikipedia

    en.wikipedia.org/wiki/Thales's_theorem

    In geometry, Thales's theorem states that if A, B, and C are distinct points on a circle where the line AC is a diameter, the angle ∠ ABC is a right angle. Thales's theorem is a special case of the inscribed angle theorem and is mentioned and proved as part of the 31st proposition in the third book of Euclid's Elements. [1]

  7. Gauss circle problem - Wikipedia

    en.wikipedia.org/wiki/Gauss_circle_problem

    This problem is known as the primitive circle problem, as it involves searching for primitive solutions to the original circle problem. [9] It can be intuitively understood as the question of how many trees within a distance of r are visible in the Euclid's orchard , standing in the origin.

  8. Category:Theorems about circles - Wikipedia

    en.wikipedia.org/.../Category:Theorems_about_circles

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us

  9. Bryson of Heraclea - Wikipedia

    en.wikipedia.org/wiki/Bryson_of_Heraclea

    Bryson's syllogism on the squaring of the circle was of this sort, it is said: In any genus in which one can find a greater and a lesser than something, one can find what is equal; but in the genus of squares one can find a greater and a lesser than a circle; therefore, one can also find a square equal to a circle.