When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hadamard's maximal determinant problem - Wikipedia

    en.wikipedia.org/wiki/Hadamard's_maximal...

    Hadamard's maximal determinant problem, named after Jacques Hadamard, asks for the largest determinant of a matrix with elements equal to 1 or −1. The analogous question for matrices with elements equal to 0 or 1 is equivalent since, as will be shown below, the maximal determinant of a {1,−1} matrix of size n is 2 n−1 times the maximal determinant of a {0,1} matrix of size n−1.

  3. Determinant - Wikipedia

    en.wikipedia.org/wiki/Determinant

    The determinant of a matrix A is commonly denoted det(A), det A, or | A |. Its value characterizes some properties of the matrix and the linear map represented, on a given basis, by the matrix. In particular, the determinant is nonzero if and only if the matrix is invertible and the corresponding linear map is an isomorphism.

  4. Matrix determinant lemma - Wikipedia

    en.wikipedia.org/wiki/Matrix_determinant_lemma

    The determinant of the left hand side is the product of the determinants of the three matrices. Since the first and third matrix are triangular matrices with unit diagonal, their determinants are just 1. The determinant of the middle matrix is our desired value. The determinant of the right hand side is simply (1 + v T u). So we have the result:

  5. Gaussian elimination - Wikipedia

    en.wikipedia.org/wiki/Gaussian_elimination

    If Gaussian elimination applied to a square matrix A produces a row echelon matrix B, let d be the product of the scalars by which the determinant has been multiplied, using the above rules. Then the determinant of A is the quotient by d of the product of the elements of the diagonal of B : det ( A ) = ∏ diag ⁡ ( B ) d . {\displaystyle \det ...

  6. Jacobian matrix and determinant - Wikipedia

    en.wikipedia.org/.../Jacobian_matrix_and_determinant

    When this matrix is square, that is, when the function takes the same number of variables as input as the number of vector components of its output, its determinant is referred to as the Jacobian determinant. Both the matrix and (if applicable) the determinant are often referred to simply as the Jacobian in literature. [4]

  7. Hadamard's inequality - Wikipedia

    en.wikipedia.org/wiki/Hadamard's_inequality

    In mathematics, Hadamard's inequality (also known as Hadamard's theorem on determinants [1]) is a result first published by Jacques Hadamard in 1893. [2] It is a bound on the determinant of a matrix whose entries are complex numbers in terms of the lengths of its column vectors.

  8. Dieudonné determinant - Wikipedia

    en.wikipedia.org/wiki/Dieudonné_determinant

    There is a determinant map from the matrix ring GL(R ) to the abelianised unit group R × ab with the following properties: [1] The determinant is invariant under elementary row operations; The determinant of the identity matrix is 1; If a row is left multiplied by a in R × then the determinant is left multiplied by a

  9. Leibniz formula for determinants - Wikipedia

    en.wikipedia.org/wiki/Leibniz_formula_for...

    (In practical applications of numerical linear algebra, however, explicit computation of the determinant is rarely required.) See, for example, Trefethen & Bau (1997) . The determinant can also be evaluated in fewer than O ( n 3 ) {\displaystyle O(n^{3})} operations by reducing the problem to matrix multiplication , but most such algorithms are ...