When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Magnetoreception - Wikipedia

    en.wikipedia.org/wiki/Magnetoreception

    Another possible mechanism of magnetoreception in animals is electromagnetic induction in cartilaginous fish, namely sharks, stingrays, and chimaeras. These fish have electroreceptive organs, the ampullae of Lorenzini, which can detect small variations in electric potential. The organs are mucus-filled and consist of canals that connect pores ...

  3. Electroreception and electrogenesis - Wikipedia

    en.wikipedia.org/wiki/Electroreception_and...

    An electric fish generates an electric field using an electric organ, modified from muscles in its tail. The field is called weak if it is only enough to detect prey, and strong if it is powerful enough to stun or kill. The field may be in brief pulses, as in the elephantfishes, or a continuous wave, as in the knifefishes.

  4. Developmental bioelectricity - Wikipedia

    en.wikipedia.org/wiki/Developmental_bioelectricity

    Developmental bioelectricity is a sub-discipline of biology, related to, but distinct from, neurophysiology and bioelectromagnetics.Developmental bioelectricity refers to the endogenous ion fluxes, transmembrane and transepithelial voltage gradients, and electric currents and fields produced and sustained in living cells and tissues.

  5. Mathematical descriptions of the electromagnetic field

    en.wikipedia.org/wiki/Mathematical_descriptions...

    If the matter field is taken so as to describe the interaction of electromagnetic fields with the Dirac electron given by the four-component Dirac spinor field ψ, the current and charge densities have form: [2] = † = †, where α are the first three Dirac matrices. Using this, we can re-write Maxwell's equations as:

  6. Electromagnetic field - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_field

    An electromagnetic field (also EM field) is a physical field, mathematical functions of position and time, representing the influences on and due to electric charges. [1] The field at any point in space and time can be regarded as a combination of an electric field and a magnetic field .

  7. Bioelectromagnetics - Wikipedia

    en.wikipedia.org/wiki/Bioelectromagnetics

    Bioelectromagnetics, also known as bioelectromagnetism, is the study of the interaction between electromagnetic fields and biological entities. Areas of study include electromagnetic fields produced by living cells, tissues or organisms, the effects of man-made sources of electromagnetic fields like mobile phones, and the application of electromagnetic radiation toward therapies for the ...

  8. Waves in plasmas - Wikipedia

    en.wikipedia.org/wiki/Waves_in_plasmas

    Waves in plasmas can be classified as electromagnetic or electrostatic according to whether or not there is an oscillating magnetic field. Applying Faraday's law of induction to plane waves , we find k × E ~ = ω B ~ {\displaystyle \mathbf {k} \times {\tilde {\mathbf {E} }}=\omega {\tilde {\mathbf {B} }}} , implying that an electrostatic wave ...

  9. Jefimenko's equations - Wikipedia

    en.wikipedia.org/wiki/Jefimenko's_equations

    There is a widespread interpretation of Maxwell's equations indicating that spatially varying electric and magnetic fields can cause each other to change in time, thus giving rise to a propagating electromagnetic wave [6] (electromagnetism). However, Jefimenko's equations show an alternative point of view. [7]