When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Scalar multiplication - Wikipedia

    en.wikipedia.org/wiki/Scalar_multiplication

    Scalar multiplication of a vector by a factor of 3 stretches the vector out. The scalar multiplications −a and 2a of a vector a. In mathematics, scalar multiplication is one of the basic operations defining a vector space in linear algebra [1] [2] [3] (or more generally, a module in abstract algebra [4] [5]).

  3. Scalar (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Scalar_(mathematics)

    A scalar is an element of a field which is used to define a vector space.In linear algebra, real numbers or generally elements of a field are called scalars and relate to vectors in an associated vector space through the operation of scalar multiplication (defined in the vector space), in which a vector can be multiplied by a scalar in the defined way to produce another vector.

  4. Dot product - Wikipedia

    en.wikipedia.org/wiki/Dot_product

    In mathematics, the dot product or scalar product [note 1] is an algebraic operation that takes two equal-length sequences of numbers (usually coordinate vectors), and returns a single number. In Euclidean geometry , the dot product of the Cartesian coordinates of two vectors is widely used.

  5. Associative algebra - Wikipedia

    en.wikipedia.org/wiki/Associative_algebra

    In mathematics, an associative algebra A over a commutative ring (often a field) K is a ring A together with a ring homomorphism from K into the center of A.This is thus an algebraic structure with an addition, a multiplication, and a scalar multiplication (the multiplication by the image of the ring homomorphism of an element of K).

  6. Operation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Operation_(mathematics)

    An example of an external operation is scalar multiplication, where a vector is multiplied by a scalar and result in a vector. An n -ary multifunction or multioperation ω is a mapping from a Cartesian power of a set into the set of subsets of that set, formally ω : X n → P ( X ) {\displaystyle \omega :X^{n}\rightarrow {\mathcal {P}}(X)} .

  7. Algebra over a field - Wikipedia

    en.wikipedia.org/wiki/Algebra_over_a_field

    In mathematics, an algebra over a field (often simply called an algebra) is a vector space equipped with a bilinear product.Thus, an algebra is an algebraic structure consisting of a set together with operations of multiplication and addition and scalar multiplication by elements of a field and satisfying the axioms implied by "vector space" and "bilinear".

  8. Algebraic structure - Wikipedia

    en.wikipedia.org/wiki/Algebraic_structure

    The members of R are sometimes called scalars, and the binary operation of scalar multiplication is a function R × M → M, which satisfies several axioms. Counting the ring operations these systems have at least three operations. Vector space: a module where the ring R is a field or, in some contexts, a division ring.

  9. Euclidean vector - Wikipedia

    en.wikipedia.org/wiki/Euclidean_vector

    The scalar multiplications −a and 2a of a vector a. Scalar multiplication is distributive over vector addition in the following sense: r(a + b) = ra + rb for all vectors a and b and all scalars r. One can also show that a − b = a + (−1)b.