Ad
related to: quantum gravity problem
Search results
Results From The WOW.Com Content Network
Quantum gravity (QG) is a field of theoretical physics that seeks to describe gravity according to the principles of quantum mechanics.It deals with environments in which neither gravitational nor quantum effects can be ignored, [1] such as in the vicinity of black holes or similar compact astrophysical objects, as well as in the early stages of the universe moments after the Big Bang.
The problem of quantum cosmology is that the physical states that solve the constraints of canonical quantum gravity represent quantum states of the entire universe and as such exclude an outside observer, however an outside observer is a crucial element in most interpretations of quantum mechanics. [clarification needed]
Loop quantum gravity (LQG) is a theory of quantum gravity that incorporates matter of the Standard Model into the framework established for the intrinsic quantum gravity case. It is an attempt to develop a quantum theory of gravity based directly on Albert Einstein 's geometric formulation rather than the treatment of gravity as a mysterious ...
Holographic principle: Is it true that quantum gravity admits a lower-dimensional description that does not contain gravity? A well-understood example of holography is the AdS/CFT correspondence in string theory. Similarly, can quantum gravity in a de Sitter space be understood using dS/CFT correspondence? Can the AdS/CFT correspondence be ...
Quantum gravity describes theories that attempt to reconcile or unify quantum mechanics and general relativity, the current theory of gravity. [5] The problem of time is central to these theoretical attempts. It remains unclear how time is related to quantum probability, whether time is fundamental or a consequence of processes, and whether ...
As such, a singularity is by definition no longer part of the regular spacetime and cannot be determined by "where" or "when". Gravitational singularities exist at a junction between general relativity and quantum mechanics; therefore, the properties of the singularity cannot be described without an established theory of quantum gravity. Trying ...
It complies with the requirement of background independence, one of the fundamental tenets of quantum gravity. This work can be considered an essential breakthrough in asymptotic safety related studies on quantum gravity as it provides the possibility of nonperturbative computations for arbitrary spacetime dimensions.
The causal sets program is an approach to quantum gravity.Its founding principles are that spacetime is fundamentally discrete (a collection of discrete spacetime points, called the elements of the causal set) and that spacetime events are related by a partial order.