Search results
Results From The WOW.Com Content Network
rfind(string,substring) returns integer Description Returns the position of the start of the last occurrence of substring in string. If the substring is not found most of these routines return an invalid index value – -1 where indexes are 0-based, 0 where they are 1-based – or some value to be interpreted as Boolean FALSE. Related instr
The picture shows two strings where the problem has multiple solutions. Although the substring occurrences always overlap, it is impossible to obtain a longer common substring by "uniting" them. The strings "ABABC", "BABCA" and "ABCBA" have only one longest common substring, viz. "ABC" of length 3.
Computing E(m, j) is very similar to computing the edit distance between two strings. In fact, we can use the Levenshtein distance computing algorithm for E ( m , j ), the only difference being that we must initialize the first row with zeros, and save the path of computation, that is, whether we used E ( i − 1, j ), E( i , j − 1) or E ( i ...
string" is a substring of "substring" In formal language theory and computer science, a substring is a contiguous sequence of characters within a string. [citation needed] For instance, "the best of" is a substring of "It was the best of times". In contrast, "Itwastimes" is a subsequence of "It was the best of times", but not a substring.
The prefix S n of S is defined as the first n characters of S. [5] For example, the prefixes of S = (AGCA) are S 0 = S 1 = (A) S 2 = (AG) S 3 = (AGC) S 4 = (AGCA). Let LCS(X, Y) be a function that computes a longest subsequence common to X and Y. Such a function has two interesting properties.
The loop at the center of the function only works for palindromes where the length is an odd number. The function works for even-length palindromes by modifying the input string. The character '|' is inserted between every character in the inputs string, and at both ends. So the input "book" becomes "|b|o|o|k|".
The Wagner–Fischer algorithm computes edit distance based on the observation that if we reserve a matrix to hold the edit distances between all prefixes of the first string and all prefixes of the second, then we can compute the values in the matrix by flood filling the matrix, and thus find the distance between the two full strings as the last value computed.
The difference between the two algorithms consists in that the optimal string alignment algorithm computes the number of edit operations needed to make the strings equal under the condition that no substring is edited more than once, whereas the second one presents no such restriction. Take for example the edit distance between CA and ABC.