When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Geometric progression - Wikipedia

    en.wikipedia.org/wiki/Geometric_progression

    For example, the sequence 2, 6, 18, 54, ... is a geometric progression with a common ratio of 3. Similarly 10, 5, 2.5, 1.25, ... is a geometric sequence with a common ratio of 1/2. Examples of a geometric sequence are powers r k of a fixed non-zero number r, such as 2 k and 3 k. The general form of a geometric sequence is

  3. List of mathematical series - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_series

    This list of mathematical series contains formulae for finite and infinite sums. It can be used in conjunction with other tools for evaluating sums. Here, is taken to have the value

  4. Absolutely and completely monotonic functions and sequences

    en.wikipedia.org/wiki/Absolutely_and_completely...

    [4] [5] Another related concept is that of a completely/absolutely monotonic sequence. This notion was introduced by Hausdorff in 1921. This notion was introduced by Hausdorff in 1921. The notions of completely and absolutely monotone function/sequence play an important role in several areas of mathematics.

  5. Geometric series - Wikipedia

    en.wikipedia.org/wiki/Geometric_series

    The geometric series is an infinite series derived from a special type of sequence called a geometric progression.This means that it is the sum of infinitely many terms of geometric progression: starting from the initial term , and the next one being the initial term multiplied by a constant number known as the common ratio .

  6. Arithmetico-geometric sequence - Wikipedia

    en.wikipedia.org/wiki/Arithmetico-geometric_sequence

    An arithmetico-geometric series is a sum of terms that are the elements of an arithmetico-geometric sequence. Arithmetico-geometric sequences and series arise in various applications, such as the computation of expected values in probability theory, especially in Bernoulli processes. For instance, the sequence

  7. List of integer sequences - Wikipedia

    en.wikipedia.org/wiki/List_of_integer_sequences

    Recamán's sequence: 0, 1, 3, 6, 2, 7, 13, 20, 12, 21, 11, 22, 10, 23, 9, 24, 8, 25, 43, 62, ... "subtract if possible, otherwise add": a(0) = 0; for n > 0, a(n) = a(n − 1) − n if that number is positive and not already in the sequence, otherwise a(n) = a(n − 1) + n, whether or not that number is already in the sequence. A005132: Look-and ...

  8. Modes of convergence - Wikipedia

    en.wikipedia.org/wiki/Modes_of_convergence

    Convergence can be defined in terms of sequences in first-countable spaces. Nets are a generalization of sequences that are useful in spaces which are not first countable. Filters further generalize the concept of convergence. In metric spaces, one can define Cauchy sequences. Cauchy nets and filters are generalizations to uniform spaces.

  9. Series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Series_(mathematics)

    In mathematics, a series is, roughly speaking, an addition of infinitely many terms, one after the other. [1] The study of series is a major part of calculus and its generalization, mathematical analysis. Series are used in most areas of mathematics, even for studying finite structures in combinatorics through generating functions.