When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. SN1 reaction - Wikipedia

    en.wikipedia.org/wiki/SN1_reaction

    A reaction mechanism was first introduced by Christopher Ingold et al. in 1940. [3] This reaction does not depend much on the strength of the nucleophile, unlike the S N 2 mechanism. This type of mechanism involves two steps. The first step is the ionization of alkyl halide in the presence of aqueous acetone or ethyl alcohol.

  3. Solvolysis - Wikipedia

    en.wikipedia.org/wiki/Solvolysis

    An example of a solvolysis reaction is the reaction of a triglyceride with a simple alcohol such as methanol or ethanol to give the methyl or ethyl esters of the fatty acid, as well as glycerol. This reaction is more commonly known as a transesterification reaction due to the exchange of the alcohol fragments. [2]

  4. SNi - Wikipedia

    en.wikipedia.org/wiki/SNi

    With standard S N 1 reaction conditions the reaction outcome is retention via a competing S N i mechanism and not racemization and with pyridine added the result is again inversion. [5] [3] S N i reaction mechanism Sn1 occurs in tertiary carbon while Sn2 occurs in primary carbon

  5. Nucleophilic substitution - Wikipedia

    en.wikipedia.org/wiki/Nucleophilic_substitution

    The two main mechanisms were the S N 1 reaction and the S N 2 reaction, where S stands for substitution, N stands for nucleophilic, and the number represents the kinetic order of the reaction. [4] In the S N 2 reaction, the addition of the nucleophile and the elimination of leaving group take place simultaneously (i.e. a concerted reaction).

  6. Substitution reaction - Wikipedia

    en.wikipedia.org/wiki/Substitution_reaction

    This results in S N 1 reactions usually occurring on atoms with at least two carbons bonded to them. [2] A more detailed explanation of this can be found in the main SN1 reaction page. S N 2 reaction mechanism. The S N 2 mechanism has just one step. The attack of the reagent and the expulsion of the leaving group happen simultaneously.

  7. Ether cleavage - Wikipedia

    en.wikipedia.org/wiki/Ether_cleavage

    Ether cleavage refers to chemical substitution reactions that lead to the cleavage of ethers. Due to the high chemical stability of ethers, the cleavage of the C-O bond is uncommon in the absence of specialized reagents or under extreme conditions. [1] [2] In organic chemistry, ether cleavage is an acid catalyzed nucleophilic substitution reaction.

  8. Williamson ether synthesis - Wikipedia

    en.wikipedia.org/wiki/Williamson_ether_synthesis

    The Williamson ether synthesis is an organic reaction, forming an ether from an organohalide and a deprotonated alcohol . This reaction was developed by Alexander Williamson in 1850. [ 2 ] Typically it involves the reaction of an alkoxide ion with a primary alkyl halide via an S N 2 reaction .

  9. Tertiary carbon - Wikipedia

    en.wikipedia.org/wiki/Tertiary_carbon

    The transition states for SN1 reactions that showcases tertiary carbons have the lowest transition state energy level in SN1 reactions. A tertiary carbocation will maximize the rate of reaction for an SN1 reaction by producing a stable carbocation. This happens because the rate determining step of a SN1 reaction is the formation of the carbocation.