Search results
Results From The WOW.Com Content Network
Both of these alloys have <100> easy axes for magnetostriction and demonstrate sufficient ductility for sensor and actuator applications. [6] Schematic of a whisker flow sensor developed using thin-sheet magnetostrictive alloys. Another very common magnetostrictive composite is the amorphous alloy Fe 81 Si 3.5 B 13.5 C 2 with its trade name ...
Magnetostrictive position sensors use the Wiedemann effect to excite an ultrasonic pulse. Typically a small magnet is used to mark a position along a magnetostrictive wire. The magnetic field from a short current pulse in the wire combined with that from the position magnet excites the ultrasonic pulse.
The principle behind magnetic, mechanical, cable, and other float level sensors often involves the opening or closing of a mechanical switch, either through direct contact with the switch, or magnetic operation of a reed. In other instances, such as magnetostrictive sensors, continuous monitoring is possible using a float principle.
where is the magnetostrictive expansion at saturation, and is the angle between the saturation magnetization and the stress's direction. When λ s {\displaystyle \lambda _{s}} and σ {\displaystyle \sigma } are both positive (like in iron under tension), the energy is minimum for θ {\displaystyle \theta } = 0, i.e. when tension is aligned with ...
Magnetostrictive LDTs provide extremely high accuracy, down to one micron. [3] Hydraulic cylinder with a Hall effect sensor mounted along its barrel to sense position of a magnetic piston inside. The sensor is mounted without having to gun drill the piston rod, yet its size and location protect it from potential environmental damage.
The principle of magnetic actuation is based on the Lorentz Force Equation. F → m a g = q v → × B {\displaystyle {\vec {F}}_{mag}=q{\vec {v}}\times B} When a current-carrying conductor is placed in a static magnetic field, the field produced around the conductor interacts with the static field to produce a force.
The Grünberg work was performed on multilayers of Fe and Cr on (110) GaAs at room temperature. [ 9 ] In Fe/Cr multilayers with 3-nm-thick iron layers, increasing the thickness of the non-magnetic Cr layers from 0.9 to 3 nm weakened the antiferromagnetic coupling between the Fe layers and reduced the demagnetization field, which also decreased ...
Easier for sensor deployment. Using piezoelectric transducer, the wave propagation angle in the test part is affected by Snell's law. As a result, a small variation in sensor deployment may cause a significant change in the refracted angle. Easier to generate SH-type waves.