Search results
Results From The WOW.Com Content Network
t may contain some, all or none of the x 1, …, x n and it may contain other variables. In this case we say that function definition binds the variables x 1, …, x n. In this manner, function definition expressions of the kind shown above can be thought of as the variable binding operator, analogous to the lambda expressions of lambda calculus.
A statement such as that predicate P is satisfied by arbitrarily large values, can be expressed in more formal notation by ∀x : ∃y ≥ x : P(y). See also frequently. The statement that quantity f(x) depending on x "can be made" arbitrarily large, corresponds to ∀y : ∃x : f(x) ≥ y. arbitrary A shorthand for the universal quantifier. An ...
absolute value The absolute value or modulus |x| of a real number x is the non-negative value of x without regard to its sign. Namely, |x| = x for a positive x, |x| = −x for a negative x (in which case −x is positive), and |0| = 0. For example, the absolute value of 3 is 3, and the absolute value of −3 is also 3.
For events in B, two conditions must be met: the probability of B is one and the relative magnitudes of the probabilities must be preserved. The former is required by the axioms of probability , and the latter stems from the fact that the new probability measure has to be the analog of P in which the probability of B is one - and every event ...
3. Between two groups, may mean that the first one is a proper subgroup of the second one. > (greater-than sign) 1. Strict inequality between two numbers; means and is read as "greater than". 2. Commonly used for denoting any strict order. 3. Between two groups, may mean that the second one is a proper subgroup of the first one. ≤ 1.
In computer algebra, formulas are viewed as expressions that can be evaluated as a Boolean, depending on the values that are given to the variables occurring in the expressions. For example takes the value false if x is given a value less than 1, and the value true otherwise.
A line is expressed as the intersection of two planes, that is as the solution set of a single linear equation with values in or as the solution set of two linear equations with values in . A conic section is the intersection of a cone with equation x 2 + y 2 = z 2 {\displaystyle x^{2}+y^{2}=z^{2}} and a plane.
Any combination of events using the operations and, or, and not is also an event, and assigning probabilities to all outcomes generates a probability for every event. In technical terms, this means that the set of events and the three operations together constitute a Boolean algebra of sets, with an associated probability function.