Search results
Results From The WOW.Com Content Network
Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) is a molecular dynamics program from Sandia National Laboratories. [1] LAMMPS makes use of Message Passing Interface (MPI) for parallel communication and is free and open-source software , distributed under the terms of the GNU General Public License .
The pressure value that is attempted to compute, is such that when plugged into momentum equations a divergence-free velocity field results. The mass imbalance is often also used for control of the outer loop. The name of this class of methods stems from the fact that the correction of the velocity field is computed through the pressure-field.
Schematic of D2Q9 lattice vectors for 2D Lattice Boltzmann. Unlike CFD methods that solve the conservation equations of macroscopic properties (i.e., mass, momentum, and energy) numerically, LBM models the fluid consisting of fictive particles, and such particles perform consecutive propagation and collision processes over a discrete lattice.
In inhomogeneous systems the pressure depends on the position and orientation of the surface on which the pressure acts. Therefore, in inhomogeneous systems a definition of a local pressure is needed. [5] As a general example for a system with inhomogeneous pressure you can think of the pressure in the atmosphere of the earth which varies with ...
Most computerized databases will create a table of thermodynamic values using the values from the datafile. For MgCl 2 (c,l,g) at 1 atm pressure: Thermodynamic properties table for MgCl 2 (c,l,g), from the FREED datafile. Some values have truncated significant figures for display purposes. The table format is a common way to display ...
In non ideal fluid dynamics, the Hagen–Poiseuille equation, also known as the Hagen–Poiseuille law, Poiseuille law or Poiseuille equation, is a physical law that gives the pressure drop in an incompressible and Newtonian fluid in laminar flow flowing through a long cylindrical pipe of constant cross section.
In aerodynamics, the normal shock tables are a series of tabulated data listing the various properties before and after the occurrence of a normal shock wave. [1] With a given upstream Mach number , the post-shock Mach number can be calculated along with the pressure , density , temperature , and stagnation pressure ratios.
(σ: surface tension, ΔP max: maximum pressure drop, R cap: radius of capillary) Later, after the maximum pressure, the pressure of the bubble decreases and the radius of the bubble increases until the bubble is detached from the end of a capillary and a new cycle begins. This is not relevant to determine the surface tension. [3]