When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Square root of 3 - Wikipedia

    en.wikipedia.org/wiki/Square_root_of_3

    The square root of 3 is an irrational number. It is also known as Theodorus' constant, after Theodorus of Cyrene, who proved its irrationality. [citation needed] In 2013, its numerical value in decimal notation was computed to ten billion digits. [1] Its decimal expansion, written here to 65 decimal places, is given by OEIS: A002194:

  3. List of mathematical constants - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_constants

    The following list includes a decimal expansion and set containing each number, ordered by year of discovery. The column headings may be clicked to sort the table alphabetically, by decimal value, or by set. Explanations of the symbols in the right hand column can be found by clicking on them.

  4. Irrational number - Wikipedia

    en.wikipedia.org/wiki/Irrational_number

    In fact, all square roots of natural numbers, other than of perfect squares, are irrational. [2] Like all real numbers, irrational numbers can be expressed in positional notation, notably as a decimal number. In the case of irrational numbers, the decimal expansion does not terminate, nor end with a repeating sequence.

  5. Glossary of mathematical symbols - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_mathematical...

    √ (square-root symbol) Denotes square root and is read as the square root of. Rarely used in modern mathematics without a horizontal bar delimiting the width of its argument (see the next item). For example, √2. √ (radical symbol) 1. Denotes square root and is read as the square root of.

  6. Vinculum (symbol) - Wikipedia

    en.wikipedia.org/wiki/Vinculum_(symbol)

    In 1637 Descartes was the first to unite the German radical sign √ with the vinculum to create the radical symbol in common use today. [8] The symbol used to indicate a vinculum need not be a line segment (overline or underline); sometimes braces can be used (pointing either up or down). [9]

  7. Real number - Wikipedia

    en.wikipedia.org/wiki/Real_number

    The set of rational numbers is not complete. For example, the sequence (1; 1.4; 1.41; 1.414; 1.4142; 1.41421; ...), where each term adds a digit of the decimal expansion of the positive square root of 2, is Cauchy but it does not converge to a rational number (in the real numbers, in contrast, it converges to the positive square root of 2).

  8. Square root - Wikipedia

    en.wikipedia.org/wiki/Square_root

    The square root of a positive integer is the product of the roots of its prime factors, because the square root of a product is the product of the square roots of the factors. Since p 2 k = p k , {\textstyle {\sqrt {p^{2k}}}=p^{k},} only roots of those primes having an odd power in the factorization are necessary.

  9. nth root - Wikipedia

    en.wikipedia.org/wiki/Nth_root

    A root of degree 2 is called a square root and a root of degree 3, a cube root. Roots of higher degree are referred by using ordinal numbers, as in fourth root, twentieth root, etc. The computation of an n th root is a root extraction. For example, 3 is a square root of 9, since 3 2 = 9, and −3 is also a square root of 9, since (−3) 2 = 9.