Search results
Results From The WOW.Com Content Network
The Antoine equation is a class of semi-empirical correlations describing the relation between vapor pressure and temperature for pure substances. The Antoine equation is derived from the Clausius–Clapeyron relation. The equation was presented in 1888 by the French engineer Louis Charles Antoine (1825–1897). [1]
The only variable quantity of the ideal gas law independent of density and pressure is temperature. This scaled quantity is known as virtual temperature, and it allows for the use of the dry-air equation of state for moist air. [5] Temperature has an inverse proportionality to density.
This result (also known as the Clapeyron equation) equates the slope / of the coexistence curve to the function / of the molar latent heat , the temperature , and the change in molar volume . Instead of the molar values, corresponding specific values may also be used.
Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...
We obtain the distribution of the property i.e. a given two dimensional situation by writing discretized equations of the form of equation (3) at each grid node of the subdivided domain. At the boundaries where the temperature or fluxes are known the discretized equation are modified to incorporate the boundary conditions.
Understanding the temperature dependence of viscosity is important for many applications, for instance engineering lubricants that perform well under varying temperature conditions (such as in a car engine), since the performance of a lubricant depends in part on its viscosity.
A thermal energy equation: Relating the overall temperature of the system to heat sources and sinks; The primitive equations may be linearized to yield Laplace's tidal equations, an eigenvalue problem from which the analytical solution to the latitudinal structure of the flow may be determined.
Since API gravity is an inverse measure of a liquid's density relative to that of water, it can be calculated by first dividing the liquid's density by the density of water at a base temperature (usually 60 °F) to compute Specific Gravity (SG), then converting the Specific Gravity to Degrees API as follows: = =