When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Zisman Plot - Wikipedia

    en.wikipedia.org/wiki/Zisman_Plot

    To find the best fit line a least squares regression is recommended by using a computer program such as Microsoft Excel, Minitab, Matlab, or it can also be done using a modern graphing calculator such as a TI-84. This was done with the data from Table 1 and the fit data for liquids 3,4, and 5 can be seen on Figure 3.

  3. Curve fitting - Wikipedia

    en.wikipedia.org/wiki/Curve_fitting

    Curve fitting [1] [2] is the process of constructing a curve, or mathematical function, that has the best fit to a series of data points, [3] possibly subject to constraints. [ 4 ] [ 5 ] Curve fitting can involve either interpolation , [ 6 ] [ 7 ] where an exact fit to the data is required, or smoothing , [ 8 ] [ 9 ] in which a "smooth ...

  4. Theil–Sen estimator - Wikipedia

    en.wikipedia.org/wiki/Theil–Sen_estimator

    It has also been called Sen's slope estimator, [1] [2] slope selection, [3] [4] the single median method, [5] the Kendall robust line-fit method, [6] and the Kendall–Theil robust line. [7] It is named after Henri Theil and Pranab K. Sen , who published papers on this method in 1950 and 1968 respectively, [ 8 ] and after Maurice Kendall ...

  5. Line fitting - Wikipedia

    en.wikipedia.org/wiki/Line_fitting

    Line fitting is the process of constructing a straight line that has the best fit to a series of data points. Several methods exist, considering: Vertical distance: Simple linear regression; Resistance to outliers: Robust simple linear regression

  6. Gauss–Newton algorithm - Wikipedia

    en.wikipedia.org/wiki/Gauss–Newton_algorithm

    Fitting of a noisy curve by an asymmetrical peak model () with parameters by mimimizing the sum of squared residuals () = at grid points , using the Gauss–Newton algorithm. Top: Raw data and model. Bottom: Evolution of the normalised sum of the squares of the errors.

  7. Linear interpolation - Wikipedia

    en.wikipedia.org/wiki/Linear_interpolation

    Given the two red points, the blue line is the linear interpolant between the points, and the value y at x may be found by linear interpolation.. In mathematics, linear interpolation is a method of curve fitting using linear polynomials to construct new data points within the range of a discrete set of known data points.

  8. Levenberg–Marquardt algorithm - Wikipedia

    en.wikipedia.org/wiki/Levenberg–Marquardt...

    This equation is an example of very sensitive initial conditions for the Levenberg–Marquardt algorithm. One reason for this sensitivity is the existence of multiple minima — the function cos ⁡ ( β x ) {\displaystyle \cos \left(\beta x\right)} has minima at parameter value β ^ {\displaystyle {\hat {\beta }}} and β ^ + 2 n π ...

  9. Least squares - Wikipedia

    en.wikipedia.org/wiki/Least_squares

    The result of fitting a set of data points with a quadratic function Conic fitting a set of points using least-squares approximation. In regression analysis, least squares is a parameter estimation method based on minimizing the sum of the squares of the residuals (a residual being the difference between an observed value and the fitted value provided by a model) made in the results of each ...