Search results
Results From The WOW.Com Content Network
CUDA 9.0–9.2 comes with these other components: CUTLASS 1.0 – custom linear algebra algorithms, NVIDIA Video Decoder was deprecated in CUDA 9.2; it is now available in NVIDIA Video Codec SDK; CUDA 10 comes with these other components: nvJPEG – Hybrid (CPU and GPU) JPEG processing; CUDA 11.0–11.8 comes with these other components: [20 ...
CUDA code runs on both the central processing unit (CPU) and graphics processing unit (GPU). NVCC separates these two parts and sends host code (the part of code which will be run on the CPU) to a C compiler like GNU Compiler Collection (GCC) or Intel C++ Compiler (ICC) or Microsoft Visual C++ Compiler, and sends the device code (the part which will run on the GPU) to the GPU.
CuPy is a part of the NumPy ecosystem array libraries [7] and is widely adopted to utilize GPU with Python, [8] especially in high-performance computing environments such as Summit, [9] Perlmutter, [10] EULER, [11] and ABCI.
Nvidia NVDEC (formerly known as NVCUVID [1]) is a feature in its graphics cards that performs video decoding, offloading this compute-intensive task from the CPU. [2] NVDEC is a successor of PureVideo and is available in Kepler and later Nvidia GPUs .
The Nvidia CUDA Compiler (NVCC) translates code written in CUDA, a C++-like language, into PTX instructions (an assembly language), and the graphics driver contains a compiler which translates PTX instructions into executable binary code, [2] which can run on the processing cores of Nvidia graphics processing units (GPUs).
At GDC 2015, Nvidia made the source code for PhysX available on GitHub, but required registration at developer.nvidia.com. [9] The proprietary SDK was provided to developers for free for both commercial and non-commercial use on Windows, Linux, macOS, iOS and Android platforms. [10]
The GeForce 10 series is a series of graphics processing units developed by Nvidia, initially based on the Pascal microarchitecture announced in March 2014. This design series succeeded the GeForce 900 series , and is succeeded by the GeForce 16 series and GeForce 20 series using the Turing microarchitecture .
Nvidia's CUDA is closed-source, whereas AMD ROCm is open source. There is open-source software built on top of the closed-source CUDA, for instance RAPIDS . CUDA is able run on consumer GPUs, whereas ROCm support is mostly offered for professional hardware such as AMD Instinct and AMD Radeon Pro .