When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Pairing heap - Wikipedia

    en.wikipedia.org/wiki/Pairing_heap

    delete-min: remove the root and do repeated melds of its subtrees until one tree remains. Various merging strategies are employed. The analysis of pairing heaps' time complexity was initially inspired by that of splay trees. [1] The amortized time per delete-min is O(log n), and the operations find-min, meld, and insert run in O(1) time. [3]

  3. Binary heap - Wikipedia

    en.wikipedia.org/wiki/Binary_heap

    When merging is a common task, a different heap implementation is recommended, such as binomial heaps, which can be merged in O(log n). Additionally, a binary heap can be implemented with a traditional binary tree data structure, but there is an issue with finding the adjacent element on the last level on the binary heap when adding an element.

  4. Binomial heap - Wikipedia

    en.wikipedia.org/wiki/Binomial_heap

    Because each binomial tree in a binomial heap corresponds to a bit in the binary representation of its size, there is an analogy between the merging of two heaps and the binary addition of the sizes of the two heaps, from right-to-left. Whenever a carry occurs during addition, this corresponds to a merging of two binomial trees during the merge.

  5. Treap - Wikipedia

    en.wikipedia.org/wiki/Treap

    Binary search for x in the tree, and create a new node at the leaf position where the binary search determines a node for x should exist. Then, as long as x is not the root of the tree and has a larger priority number than its parent z , perform a tree rotation that reverses the parent-child relation between x and z .

  6. Binary tree - Wikipedia

    en.wikipedia.org/wiki/Binary_tree

    A perfect binary tree is a binary tree in which all interior nodes have two children and all leaves have the same depth or same level (the level of a node defined as the number of edges or links from the root node to a node). [18] A perfect binary tree is a full binary tree.

  7. Tree traversal - Wikipedia

    en.wikipedia.org/wiki/Tree_traversal

    In computer science, tree traversal (also known as tree search and walking the tree) is a form of graph traversal and refers to the process of visiting (e.g. retrieving, updating, or deleting) each node in a tree data structure, exactly once. Such traversals are classified by the order in which the nodes are visited.

  8. Skew heap - Wikipedia

    en.wikipedia.org/wiki/Skew_heap

    A skew heap (or self-adjusting heap) is a heap data structure implemented as a binary tree. Skew heaps are advantageous because of their ability to merge more quickly than binary heaps. In contrast with binary heaps, there are no structural constraints, so there is no guarantee that the height of the tree is logarithmic. Only two conditions ...

  9. Join-based tree algorithms - Wikipedia

    en.wikipedia.org/wiki/Join-based_tree_algorithms

    In computer science, join-based tree algorithms are a class of algorithms for self-balancing binary search trees. This framework aims at designing highly-parallelized algorithms for various balanced binary search trees. The algorithmic framework is based on a single operation join. [1]