Search results
Results From The WOW.Com Content Network
The Heine–Cantor theorem asserts that every continuous function on a compact set is uniformly continuous. In particular, if a function is continuous on a closed bounded interval of the real line, it is uniformly continuous on that interval. The Darboux integrability of continuous functions follows almost immediately from this theorem.
The continuous uniform distribution with parameters = and =, i.e. (,), is called the standard uniform distribution. One interesting property of the standard uniform distribution is that if u 1 {\displaystyle u_{1}} has a standard uniform distribution, then so does 1 − u 1 . {\displaystyle 1-u_{1}.}
The characteristic function of a real-valued random variable always exists, since it is an integral of a bounded continuous function over a space whose measure is finite. A characteristic function is uniformly continuous on the entire space. It is non-vanishing in a region around zero: φ(0) = 1. It is bounded: | φ(t) | ≤ 1.
Every Lipschitz continuous map is uniformly continuous, and hence continuous. More generally, a set of functions with bounded Lipschitz constant forms an equicontinuous set. The Arzelà–Ascoli theorem implies that if {f n} is a uniformly bounded sequence of functions with bounded Lipschitz constant, then it has a convergent subsequence. By ...
The strongly continuous semigroup T is called uniformly continuous if the map t → T(t ) is continuous from [0, ∞) to L(X). The generator of a uniformly continuous semigroup is a bounded operator .
A sublinear modulus of continuity can easily be found for any uniformly continuous function which is a bounded perturbation of a Lipschitz function: if f is a uniformly continuous function with modulus of continuity ω, and g is a k Lipschitz function with uniform distance r from f, then f admits the sublinear module of continuity min{ω(t), 2r ...
A sequence of functions () converges uniformly to when for arbitrary small there is an index such that the graph of is in the -tube around f whenever . The limit of a sequence of continuous functions does not have to be continuous: the sequence of functions () = (marked in green and blue) converges pointwise over the entire domain, but the limit function is discontinuous (marked in red).
However, f is continuous if all functions are continuous and the sequence converges uniformly, by the uniform convergence theorem. This theorem can be used to show that the exponential functions , logarithms , square root function, and trigonometric functions are continuous.