When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Uniform continuity - Wikipedia

    en.wikipedia.org/wiki/Uniform_continuity

    The Heine–Cantor theorem asserts that every continuous function on a compact set is uniformly continuous. In particular, if a function is continuous on a closed bounded interval of the real line, it is uniformly continuous on that interval. The Darboux integrability of continuous functions follows almost immediately from this theorem.

  3. Continuous uniform distribution - Wikipedia

    en.wikipedia.org/wiki/Continuous_uniform...

    The continuous uniform distribution with parameters = and =, i.e. (,), is called the standard uniform distribution. One interesting property of the standard uniform distribution is that if u 1 {\displaystyle u_{1}} has a standard uniform distribution, then so does 1 − u 1 . {\displaystyle 1-u_{1}.}

  4. Characteristic function (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Characteristic_function...

    The characteristic function of a real-valued random variable always exists, since it is an integral of a bounded continuous function over a space whose measure is finite. A characteristic function is uniformly continuous on the entire space. It is non-vanishing in a region around zero: φ(0) = 1. It is bounded: | φ(t) | ≤ 1.

  5. Lipschitz continuity - Wikipedia

    en.wikipedia.org/wiki/Lipschitz_continuity

    Every Lipschitz continuous map is uniformly continuous, and hence continuous. More generally, a set of functions with bounded Lipschitz constant forms an equicontinuous set. The Arzelà–Ascoli theorem implies that if {f n} is a uniformly bounded sequence of functions with bounded Lipschitz constant, then it has a convergent subsequence. By ...

  6. C0-semigroup - Wikipedia

    en.wikipedia.org/wiki/C0-semigroup

    The strongly continuous semigroup T is called uniformly continuous if the map t → T(t ) is continuous from [0, ∞) to L(X). The generator of a uniformly continuous semigroup is a bounded operator .

  7. Modulus of continuity - Wikipedia

    en.wikipedia.org/wiki/Modulus_of_continuity

    A sublinear modulus of continuity can easily be found for any uniformly continuous function which is a bounded perturbation of a Lipschitz function: if f is a uniformly continuous function with modulus of continuity ω, and g is a k Lipschitz function with uniform distance r from f, then f admits the sublinear module of continuity min{ω(t), 2r ...

  8. Uniform convergence - Wikipedia

    en.wikipedia.org/wiki/Uniform_convergence

    A sequence of functions () converges uniformly to when for arbitrary small there is an index such that the graph of is in the -tube around f whenever . The limit of a sequence of continuous functions does not have to be continuous: the sequence of functions () = ⁡ (marked in green and blue) converges pointwise over the entire domain, but the limit function is discontinuous (marked in red).

  9. Continuous function - Wikipedia

    en.wikipedia.org/wiki/Continuous_function

    However, f is continuous if all functions are continuous and the sequence converges uniformly, by the uniform convergence theorem. This theorem can be used to show that the exponential functions , logarithms , square root function, and trigonometric functions are continuous.