When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Uniform continuity - Wikipedia

    en.wikipedia.org/wiki/Uniform_continuity

    The difference between uniform continuity and (ordinary) continuity is that, in uniform continuity there is a globally applicable (the size of a function domain interval over which function value differences are less than ) that depends on only , while in (ordinary) continuity there is a locally applicable that depends on both and . So uniform ...

  3. Continuous function - Wikipedia

    en.wikipedia.org/wiki/Continuous_function

    A stronger form of continuity is uniform continuity. In order theory , especially in domain theory , a related concept of continuity is Scott continuity . As an example, the function H ( t ) denoting the height of a growing flower at time t would be considered continuous.

  4. Cauchy-continuous function - Wikipedia

    en.wikipedia.org/wiki/Cauchy-continuous_function

    In mathematics, a Cauchy-continuous, or Cauchy-regular, function is a special kind of continuous function between metric spaces (or more general spaces). Cauchy-continuous functions have the useful property that they can always be (uniquely) extended to the Cauchy completion of their domain.

  5. Modulus of continuity - Wikipedia

    en.wikipedia.org/wiki/Modulus_of_continuity

    A sublinear modulus of continuity can easily be found for any uniformly continuous function which is a bounded perturbation of a Lipschitz function: if f is a uniformly continuous function with modulus of continuity ω, and g is a k Lipschitz function with uniform distance r from f, then f admits the sublinear module of continuity min{ω(t), 2r ...

  6. Heine–Cantor theorem - Wikipedia

    en.wikipedia.org/wiki/Heine–Cantor_theorem

    Proof of Heine–Cantor theorem. Suppose that and are two metric spaces with metrics and , respectively.Suppose further that a function : is continuous and is compact. We want to show that is uniformly continuous, that is, for every positive real number > there exists a positive real number > such that for all points , in the function domain, (,) < implies that ((), ()) <.

  7. Lipschitz continuity - Wikipedia

    en.wikipedia.org/wiki/Lipschitz_continuity

    In the theory of differential equations, Lipschitz continuity is the central condition of the Picard–Lindelöf theorem which guarantees the existence and uniqueness of the solution to an initial value problem. A special type of Lipschitz continuity, called contraction, is used in the Banach fixed-point theorem. [2]

  8. Uniform space - Wikipedia

    en.wikipedia.org/wiki/Uniform_space

    In the mathematical field of topology, a uniform space is a set with additional structure that is used to define uniform properties, such as completeness, uniform continuity and uniform convergence. Uniform spaces generalize metric spaces and topological groups , but the concept is designed to formulate the weakest axioms needed for most proofs ...

  9. Wikipedia:Reference desk/Archives/Mathematics/2010 December 6

    en.wikipedia.org/wiki/Wikipedia:Reference_desk/...

    Yes, the point is that uniform continuity demands a 'one size fits all' definition for the limit, \delta cannot depend on x_0, as it can for regular continuity. Intuitively, any differentiable function on an open domain with an unbounded first derivative will fail to be uniformly continuous.