Search results
Results From The WOW.Com Content Network
joule per kelvin (J⋅K −1) constant of integration: varied depending on context speed of light (in vacuum) 299,792,458 meters per second (m/s) speed of sound: meter per second (m/s) specific heat capacity: joule per kilogram per kelvin (J⋅kg −1 ⋅K −1) viscous damping coefficient kilogram per second (kg/s)
The constants listed here are known values of physical constants expressed in SI units; that is, physical quantities that are generally believed to be universal in nature and thus are independent of the unit system in which they are measured.
Product of a force and the perpendicular distance of the force from the point about which it is exerted newton-metre (N⋅m) L 2 M T −2: bivector (or pseudovector in 3D) Velocity: v →: Moved distance per unit time: the first time derivative of position m/s L T −1: vector Wavevector: k →
This is a categorized list of physics mnemonics. Mechanics. Work: formula "Lots of ... Once upon a time, the symbol E (for electromotive force) ...
Action at a distance is the concept in physics that an object's motion can be affected by another object without the two being in physical contact; that is, it is the concept of the non-local interaction of objects that are separated in space. Coulomb's law and Newton's law of universal gravitation are based on action at a distance.
where is the elementary charge, is the electron mass, is the speed of light, and is the permittivity of free space. [1] This numerical value is several times larger than the radius of the proton . In cgs units , the permittivity factor and 1 4 π {\displaystyle {\frac {1}{4\pi }}} do not enter, but the classical electron radius has the same value.
1.0 mm – 0.03937 inches or 5/127 (exactly) 1.0 mm – side of a square of area 1 mm²; 1.0 mm – diameter of a pinhead; 1.5 mm – average length of a flea [27] 2.54 mm – distance between pins on old dual in-line package (DIP) electronic components; 5 mm – length of an average red ant; 5 mm – diameter of an average grain of rice
Position vectors r and r′ used in the calculation. Retarded time t r or t′ is calculated with a "speed-distance-time" calculation for EM fields.. If the EM field is radiated at position vector r′ (within the source charge distribution), and an observer at position r measures the EM field at time t, the time delay for the field to travel from the charge distribution to the observer is |r ...