Search results
Results From The WOW.Com Content Network
Marcus's method is a structural analysis used in the design of reinforced concrete slabs.The method was developed by Henri Marcus and described in 1938 in Die Theorie elastischer Gewebe und ihre Anwendung auf die Berechnung biegsamer Platten. [1]
Waffle slabs are preferred for spans greater than 40 feet (12 m), because, for a given mass of concrete, they are much stronger than flat slabs, flat slabs with drop panels, two-way slabs, one-way slabs, and one-way joist slabs. [2] Section of a waffle slab including beam, ribs, and column head
A two-way slab has moment resisting reinforcement in both directions. [24] This may be implemented due to application requirements such as heavy loading, vibration resistance, clearance below the slab, or other factors. However, an important characteristic governing the requirement of a two-way slab is the ratio of the two horizontal lengths.
Compared to traditional solid slabs, the reduced self-weight of biaxial slabs allows for longer spans and/or reduced deck thickness. The overall mass of concrete can be reduced by 35–50% depending on the design, [ 1 ] as a consequence of reduced slab mass, as well as lower requirements for vertical structure and foundations.
Since the 1950s there have been several attempts to develop theories for arching action in both one and two-way slabs. [5] [6] [7] One of the principal approaches to membrane action was that due to Park [8] which has been used as a basis for many studies into arching action in slabs. Park's approach was based on rigid plastic slab strip theory ...
The Wood–Armer method is a structural analysis method based on finite element analysis used to design the reinforcement for concrete slabs. [1] This method provides simple equations to design a concrete slab based on the output from a finite element analysis software.
Waffle slab foundations adhere to International Building Code requirements. By 2008, most states put into effect the changes adopted in the 2006 IBC and, in regards to foundations, the on-grade mat foundation has become a more attractive design because, as an engineered system, it already accommodates the 2008 design recommendations, and required no major modifications to bring it into compliance.
The precast concrete slab has tubular voids extending the full length of the slab, typically with a diameter equal to the 2/3–3/4 the thickness of the slab. This makes the slab much lighter than a massive solid concrete floor slab of equal thickness or strength. The reduced weight also lowers material and transportation costs.