Search results
Results From The WOW.Com Content Network
In mathematics, a Riemann sum is a certain kind of approximation of an integral by a finite sum. It is named after nineteenth century German mathematician Bernhard Riemann . One very common application is in numerical integration , i.e., approximating the area of functions or lines on a graph, where it is also known as the rectangle rule .
Discrete integral calculus is the study of the definitions, properties, and applications of the Riemann sums. The process of finding the value of a sum is called integration . In technical language, integral calculus studies a certain linear operator .
Loosely speaking, the Riemann integral is the limit of the Riemann sums of a function as the partitions get finer. If the limit exists then the function is said to be integrable (or more specifically Riemann-integrable). The Riemann sum can be made as close as desired to the Riemann integral by making the partition fine enough.
A partition of an interval being used in a Riemann sum. The partition itself is shown in grey at the bottom, with the norm of the partition indicated in red. In mathematics, a partition of an interval [a, b] on the real line is a finite sequence x 0, x 1, x 2, …, x n of real numbers such that a = x 0 < x 1 < x 2 < … < x n = b.
Generally speaking, Riemann solvers are specific methods for computing the numerical flux across a discontinuity in the Riemann problem. [1] They form an important part of high-resolution schemes; typically the right and left states for the Riemann problem are calculated using some form of nonlinear reconstruction, such as a flux limiter or a WENO method, and then used as the input for the ...
A quadrature rule is an approximation of the definite integral of a function, usually stated as a weighted sum of function values at specified points within the domain of integration. Numerical integration methods can generally be described as combining evaluations of the integrand to get an approximation to the integral.
The Poisson summation formula is also useful to bound the errors obtained when an integral is approximated by a (Riemann) sum. Consider an approximation of S ( 0 ) = ∫ − ∞ ∞ d x s ( x ) {\textstyle S(0)=\int _{-\infty }^{\infty }dx\,s(x)} as δ ∑ n = − ∞ ∞ s ( n δ ) {\textstyle \delta \sum _{n=-\infty }^{\infty }s(n\delta ...
For real values of x, the Airy function of the first kind can be defined by the improper Riemann integral: = (+) (+), which converges by Dirichlet's test. For any real number x there is a positive real number M such that function t 3 3 + x t {\textstyle {\tfrac {t^{3}}{3}}+xt} is increasing, unbounded and convex with continuous and ...