Search results
Results From The WOW.Com Content Network
A sound choice of which extrapolation method to apply relies on a priori knowledge of the process that created the existing data points. Some experts have proposed the use of causal forces in the evaluation of extrapolation methods. [2] Crucial questions are, for example, if the data can be assumed to be continuous, smooth, possibly periodic, etc.
Simpson's rule — fourth-order method, based on (piecewise) quadratic approximation Adaptive Simpson's method; Boole's rule — sixth-order method, based on the values at five equidistant points; Newton–Cotes formulas — generalizes the above methods; Romberg's method — Richardson extrapolation applied to trapezium rule
In numerical analysis, the Bulirsch–Stoer algorithm is a method for the numerical solution of ordinary differential equations which combines three powerful ideas: Richardson extrapolation, the use of rational function extrapolation in Richardson-type applications, and the modified midpoint method, [1] to obtain numerical solutions to ordinary ...
In numerical analysis, Romberg's method [1] is used to estimate the definite integral by applying Richardson extrapolation [2] repeatedly on the trapezium rule or the rectangle rule (midpoint rule). The estimates generate a triangular array .
An example of Richardson extrapolation method in two dimensions. In numerical analysis , Richardson extrapolation is a sequence acceleration method used to improve the rate of convergence of a sequence of estimates of some value A ∗ = lim h → 0 A ( h ) {\displaystyle A^{\ast }=\lim _{h\to 0}A(h)} .
In numerical analysis, Aitken's delta-squared process or Aitken extrapolation is a series acceleration method used for accelerating the rate of convergence of a sequence. It is named after Alexander Aitken, who introduced this method in 1926. [1] It is most useful for accelerating the convergence of a sequence that is converging linearly.
Fitting of a noisy curve by an asymmetrical peak model, with an iterative process (Gauss–Newton algorithm with variable damping factor α).Curve fitting [1] [2] is the process of constructing a curve, or mathematical function, that has the best fit to a series of data points, [3] possibly subject to constraints.
The divided difference methods have the advantage that more data points can be added, for improved accuracy. The terms based on the previous data points can continue to be used. With the ordinary Lagrange formula, to do the problem with more data points would require re-doing the whole problem.