When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Blade element momentum theory - Wikipedia

    en.wikipedia.org/wiki/Blade_Element_Momentum_Theory

    Blade element momentum theory is a theory that combines both blade element theory and momentum theory. It is used to calculate the local forces on a propeller or wind-turbine blade. Blade element theory is combined with momentum theory to alleviate some of the difficulties in calculating the induced velocities at the rotor.

  3. Blade element theory - Wikipedia

    en.wikipedia.org/wiki/Blade_element_theory

    Consider the element at radius r, shown in Fig. 1, which has the infinitesimal length dr and the width b. The motion of the element in an aircraft propeller in flight is along a helical path determined by the forward velocity V of the aircraft and the tangential velocity 2πrn of the element in the plane of the propeller disc, where n represents the revolutions per unit time.

  4. Euler's equations (rigid body dynamics) - Wikipedia

    en.wikipedia.org/wiki/Euler's_equations_(rigid...

    In classical mechanics, Euler's rotation equations are a vectorial quasilinear first-order ordinary differential equation describing the rotation of a rigid body, using a rotating reference frame with angular velocity ω whose axes are fixed to the body. Their general vector form is. where M is the applied torques and I is the inertia matrix.

  5. Torque - Wikipedia

    en.wikipedia.org/wiki/Torque

    t. e. In physics and mechanics, torque is the rotational analogue of linear force. [1] It is also referred to as the moment of force (also abbreviated to moment). The symbol for torque is typically , the lowercase Greek letter tau. When being referred to as moment of force, it is commonly denoted by M.

  6. Rigid body dynamics - Wikipedia

    en.wikipedia.org/wiki/Rigid_body_dynamics

    The dynamics of an interconnected system of rigid bodies, Bi, j = 1, ..., M, is formulated by isolating each rigid body and introducing the interaction forces. The resultant of the external and interaction forces on each body, yields the force-torque equations. Newton's formulation yields 6 M equations that define the dynamics of a system of M ...

  7. Bending moment - Wikipedia

    en.wikipedia.org/wiki/Bending_moment

    Bending moment. Shear and moment diagram for a simply supported beam with a concentrated load at mid-span. In solid mechanics, a bending moment is the reaction induced in a structural element when an external force or moment is applied to the element, causing the element to bend. [1][2] The most common or simplest structural element subjected ...

  8. Capstan equation - Wikipedia

    en.wikipedia.org/wiki/Capstan_equation

    The formula is. where is the applied tension on the line, is the resulting force exerted at the other side of the capstan, is the coefficient of friction between the rope and capstan materials, and is the total angle swept by all turns of the rope, measured in radians (i.e., with one full turn the angle ). For dynamic applications such as belt ...

  9. Torsion constant - Wikipedia

    en.wikipedia.org/wiki/Torsion_constant

    The torsion constant or torsion coefficient is a geometrical property of a bar's cross-section. It is involved in the relationship between angle of twist and applied torque along the axis of the bar, for a homogeneous linear elastic bar. The torsion constant, together with material properties and length, describes a bar's torsional stiffness.